首页 | 本学科首页   官方微博 | 高级检索  
     


ON THE MARTINGALE PROPERTY IN STOCHASTIC VOLATILITY MODELS BASED ON TIME‐HOMOGENEOUS DIFFUSIONS
Authors:Carole Bernard  Zhenyu Cui  Don McLeish
Affiliation:1. University of Waterloo;2. Brooklyn College of the CityUniversity of New York
Abstract:Lions and Musiela give sufficient conditions to verify when a stochastic exponential of a continuous local martingale is a martingale or a uniformly integrable martingale. Blei and Engelbert and Mijatovi? and Urusov give necessary and sufficient conditions in the case of perfect correlation (urn:x-wiley:09601627:media:mafi12084:mafi12084-math-0001). For financial applications, such as checking the martingale property of the stock price process in correlated stochastic volatility models, we extend their work to the arbitrary correlation case (urn:x-wiley:09601627:media:mafi12084:mafi12084-math-0002). We give a complete classification of the convergence properties of both perpetual and capped integral functionals of time‐homogeneous diffusions and generalize results in Mijatovi? and Urusov with direct proofs avoiding the use of separating times (concept introduced by Cherny and Urusov and extensively used in the proofs of Mijatovi? and Urusov).
Keywords:Martingale property  local martingale  stochastic volatility  Engelbert Schmidt zero‐one law
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号