首页 | 本学科首页   官方微博 | 高级检索  
     


Long memory in volatilities of German stock returns
Authors:Philipp?Sibbertsen  mailto:sibberts@amadeus.statistik.uni-dortmund.de"   title="  sibberts@amadeus.statistik.uni-dortmund.de"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Fachbereich Statistik, Universität Dortmund, 44221 Dortmund, Germany
Abstract:
We show that there is strong evidence of long-range dependence in the volatilities of several German stock returns. This will be done by applying a method using the difference of the classical log-periodogram regression estimator for the memory parameter and of the tapered periodogram based estimator. Both estimators give similar values for the memory parameter for each series and this indicates long memory. To support our findings we apply also a methodology using the sample variance and a wavelet based estimator to the data. Also these two methods show clear evidence of long-range dependence in the volatilities of German stock returns.First version received: December 2001/Final version received: March 2003The computational assistance of Eleni Mitropoulou and Björn Stollenwerck as well as the helpful comments of two unknown referees are gratefully acknowledged. Research supported by Deutsche Forschungsgemeinschaft under SFB 475. Stock returns were obtained from Deutsche Finanzdatenbank (DFDB), Karlsruhe.
Keywords:Long memory  volatilities  log-periodogram estimation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号