首页 | 本学科首页   官方微博 | 高级检索  
     


Relative entropy in sequential decision problems
Authors:Ehud Lehrer  Rann Smorodinsky  
Abstract:Consider an agent who faces a sequential decision problem. At each stage the agent takes an action and observes a stochastic outcome (e.g., daily prices, weather conditions, opponents' actions in a repeated game, etc.). The agent's stage-utility depends on his action, the observed outcome and on previous outcomes. We assume the agent is Bayesian and is endowed with a subjective belief over the distribution of outcomes. The agent's initial belief is typically inaccurate. Therefore, his subjectively optimal strategy is initially suboptimal. As time passes information about the true dynamics is accumulated and, depending on the compatibility of the belief with respect to the truth, the agent may eventually learn to optimize. We introduce the notion of relative entropy, which is a natural adaptation of the entropy of a stochastic process to the subjective set-up. We present conditions, expressed in terms of relative entropy, that determine whether the agent will eventually learn to optimize. It is shown that low entropy yields asymptotic optimal behavior. In addition, we present a notion of pointwise merging and link it with relative entropy.
Keywords:Relative entropy   Sequential decision problems   Optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号