首页 | 本学科首页   官方微博 | 高级检索  
     


PRICING EQUITY DERIVATIVES SUBJECT TO BANKRUPTCY
Authors:Vadim  Linetsky
Affiliation:Northwestern University, Evanston, Illinois
Abstract:We solve in closed form a parsimonious extension of the Black–Scholes–Merton model with bankruptcy where the hazard rate of bankruptcy is a negative power of the stock price. Combining a scale change and a measure change, the model dynamics is reduced to a linear stochastic differential equation whose solution is a diffusion process that plays a central role in the pricing of Asian options. The solution is in the form of a spectral expansion associated with the diffusion infinitesimal generator. The latter is closely related to the Schrödinger operator with Morse potential. Pricing formulas for both corporate bonds and stock options are obtained in closed form. Term credit spreads on corporate bonds and implied volatility skews of stock options are closely linked in this model, with parameters of the hazard rate specification controlling both the shape of the term structure of credit spreads and the slope of the implied volatility skew. Our analytical formulas are easy to implement and should prove useful to researchers and practitioners in corporate debt and equity derivatives markets.
Keywords:bankruptcy    credit risk    hazard rate    credit spread    stock options    implied volatility skew    Asian options    Brownian exponential functionals    Schrödinger operator with Morse potential    spectral expansions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号