Studying the association between air pollution and lung cancer incidence in a large metropolitan area using a kernel density function |
| |
Authors: | Boris A. Portnov [Author Vitae] Jonathan Dubnov [Author Vitae] Micha Barchana [Author Vitae] |
| |
Affiliation: | a Department of Natural Resources & Environmental Management, Graduate School of Management, University of Haifa, Israel b Haifa District Health Office, Ministry of Health, Israel c Israel National Cancer Registry, Ministry of Health, Israel d School of Public Health, University of Haifa, Israel |
| |
Abstract: | In the absence of patient-specific data, composite level data are often used in epidemiological studies. However, since individual exposure levels cannot accurately be inferred from aggregate data, such an approach may lead to erroneous estimates of health effects of potential environmental risk factors. In the present study, we attempt to address this information-loss problem by using the “kernel density function”, which estimates the intensity of events across a surface, by calculating the overall number of cases situated within a given search radius from a target point. The present paper illustrates the use of this analytical technique for a study of association between the geographical distributions of lung cancer cases and SO2 air pollution estimates in the Greater Haifa Metropolitan Area (GHMA). In the analysis, the results obtained by kernel smoothing are contrasted with those obtained by areal aggregation techniques more commonly used in empirical studies. |
| |
Keywords: | Kernel density Air pollution Cancer |
本文献已被 ScienceDirect 等数据库收录! |
|