首页 | 本学科首页   官方微博 | 高级检索  
     


Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix
Authors:Min Seong Kim  Yixiao Sun  
Affiliation:a Department of Economics, UC San Diego, United States
Abstract:This paper considers spatial heteroskedasticity and autocorrelation consistent (spatial HAC) estimation of covariance matrices of parameter estimators. We generalize the spatial HAC estimator introduced by Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with moment conditions. We establish its consistency, rate of convergence and asymptotic truncated mean squared error (MSE). Based on the asymptotic truncated MSE criterion, we derive the optimal bandwidth parameter and suggest its data dependent estimation procedure using a parametric plug-in method. The finite sample performances of the spatial HAC estimator are evaluated via Monte Carlo simulation.
Keywords:Asymptotic mean squared error   Heteroskedasticity and autocorrelation   Covariance matrix estimator   Optimal bandwidth choice   Robust standard error   Spatial dependence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号