Abstract: | The aim of this work is to assess the impact of (partial) vertical integration between generators and retailers on generation capacity choice and its subsequent welfare consequences. We present a framework in which final demand is perfectly inelastic and stochastic. Nevertheless, wholesale demand is elastic because of the existence of outside opportunities (mainly international transmission capacity). The model is a three-stage game. Neither transmission nor retail costs are taken into account.In the first stage of the game, generators choose capacity only knowing distribution of demand and thus maximizing their expected profit. The second stage of the game represents the competition for market share between retailers in a market where consumers have switching costs. The former face unknown demand and maximize their utility based on two factors: the expected profit and a risk element. Finally, generators submit bid functions to the system operator given known demand and maximizing their profit during the last stage of the game. Retailers and generators interact in the wholesale market, which is cleared by the system operator whose function is to match supply (represented by the bids of the generators) and demand through a system of single price auctions. The wholesale market is the only means to buy and sell energy; there are no bilateral contracts between firms, except if they are vertically integrated. We compare fully disintegrated and partially vertically integrated structures using a comparative statics approach. In this paper, the analysis will focus on the last stage of the game: the bidding game. We find that partial vertical integration between generators and retailers tends to lower wholesale prices but not unambiguously. Depending on which firm (vertically integrated or disintegrated generator) has installed the higher capacity and depending on level of demand, prices can stay unchanged or even rise. |