首页 | 本学科首页   官方微博 | 高级检索  
     

一种加权聚类划分决策树算法
引用本文:刘振宇,褚 娜. 一种加权聚类划分决策树算法[J]. 国际商务研究, 2020, 0(11)
作者姓名:刘振宇  褚 娜
作者单位:1.东北大学 计算机科学与工程学院,沈阳 110819;2.大连东软信息学院 计算机与软件学院,辽宁 大连 116023
基金项目:国家自然科学基金青年基金资助项目(61602075)
摘    要:针对斜划分决策树算法普遍存在时间效率低、部分算法仅能应用于二分类问题,提出了一种基于加权距离的聚类决策树算法。通过Relief-F算法为预测属性计算权重,并将权重用于树结点中数据的聚类过程,使用分簇结果对结点进行多路划分,得到可直接用于多分类问题的决策树。理论分析和实验结果表明,该算法与经典轴平行决策树相比,拥有更好的泛化能力以及相近的算法时间复杂度,与大部分斜决策树相比,在付出更少计算代价的前提下,获得了近似的正确率以及模型简洁度。

关 键 词:机器学习;决策树;聚类;属性加权;多路划分

A Weighted Clustering Splitting Decision Tree Algorithm
LIU Zhenyu,CHU Na. A Weighted Clustering Splitting Decision Tree Algorithm[J]. International Business Research, 2020, 0(11)
Authors:LIU Zhenyu  CHU Na
Abstract:To solve the problems that the time efficiency of the oblique decision tree is low and a few algorithms are used only in binary classification,a clustering decision tree algorithm based on weighted distance(WCDT) is proposed.Weights are calculated for prediction attributes by Relief-F,and applied during the clustering of tree nodes.The clustering results are serviced in multi-way splits in order to apply in the decision tree for multi-classification problems.Theoretical analysis and experimental results show that compared with the classical axis parallel decision trees,the proposed algorithm has better generalization ability and similar algorithm time complexity;and compared with the most oblique decision trees,it has obtained an approximate accuracy and simplicity in case of less computational.
Keywords:machine learning  decision tree  clustering  attribute weight  multi-way splits
点击此处可从《国际商务研究》浏览原始摘要信息
点击此处可从《国际商务研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号