首页 | 本学科首页   官方微博 | 高级检索  
     


Robust estimation for the order of finite mixture models
Authors:Sangyeol Lee  Taewook Lee
Affiliation:(1) Department of Statistics, Seoul National University, Seoul, 151-742, South Korea
Abstract:
In this paper, we study a robust and efficient estimation procedure for the order of finite mixture models based on the minimizing a penalized density power divergence estimator. For this task, we use the locally conic parametrization approach developed by Dacunha-Castelle and Gassiate (ESAIM Probab Stat 285–317, 1997a; Ann Stat 27:1178–1209, 1999), and verify that the minimizing a penalized density power divergence estimator is consistent. Simulation results are provided for illustration.
Keywords:Finite mixture model  Non-identifiable model  Penalized minimum density power divergence estimator  Robust estimator
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号