首页 | 本学科首页   官方微博 | 高级检索  
     


One-step R-estimation in linear models with stable errors
Authors:Marc Hallin  Yvik Swan  Thomas Verdebout  David Veredas
Affiliation:1. ECARES, Université libre de Bruxelles, Belgium;2. ORFE, Princeton University, United States;3. Académie Royale de Belgique; CentER, Tilburg University, Netherlands;4. Unité de Recherche en Mathématiques, Université du Luxembourg, Luxembourg;5. Département de Mathématique, Université libre de Bruxelles, Belgium;6. EQUIPPE-GREMARS, Université Lille Nord de France, France;g Solvay Business School of Economics and Management, Université libre de Bruxelles, Belgium
Abstract:Classical estimation techniques for linear models either are inconsistent, or perform rather poorly, under αα-stable error densities; most of them are not even rate-optimal. In this paper, we propose an original one-step R-estimation method and investigate its asymptotic performances under stable densities. Contrary to traditional least squares, the proposed R-estimators remain root-nn consistent (the optimal rate) under the whole family of stable distributions, irrespective of their asymmetry and tail index. While parametric stable-likelihood estimation, due to the absence of a closed form for stable densities, is quite cumbersome, our method allows us to construct estimators reaching the parametric efficiency bounds associated with any prescribed values (α0,b0)(α0,b0) of the tail index αα and skewness parameter bb, while preserving root-nn consistency under any (α,b)(α,b) as well as under usual light-tailed densities. The method furthermore avoids all forms of multidimensional argmin computation. Simulations confirm its excellent finite-sample performances.
Keywords:Stable distributions   Local asymptotic normality   LAD estimation   R-estimation   Asymptotic relative efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号