首页 | 本学科首页   官方微博 | 高级检索  
     

基于GNNM(1.1)模型的货运量及货运周转量预测
引用本文:陈皓,李忠. 基于GNNM(1.1)模型的货运量及货运周转量预测[J]. 价值工程, 2011, 30(10): 10-11
作者姓名:陈皓  李忠
作者单位:1. 西南交通大学交通运输学院,成都,610031
2. 上海铁路局无锡站业务科,无锡,214000
摘    要:通过各种算法对货运指标进行有效预测,对于把握未来货运发展趋势有着非常重要的作用。文章将灰色预测与神经网络预测方法进行了有机结合,建立了一个基于灰色神经网络的预测(GNNM)模型。通过模型对货运量及货运周转量进行了预测,得到了较满意的结果,表明了模型具有较高的可靠性及实用性。

关 键 词:铁路货运  预测模型  灰色神经网络

Forecasts of Cargo and Freight Turnover Volume Based on GNNM(1.1) Model
Chen Hao,Li Zhong. Forecasts of Cargo and Freight Turnover Volume Based on GNNM(1.1) Model[J]. Value Engineering, 2011, 30(10): 10-11
Authors:Chen Hao  Li Zhong
Affiliation:① Chen Hao;② Li Zhong(① College of Traffic and Transportation,Southwest Jiaotong University,Chengdu 610031,China; ②Shanghai Railway Station Wuxi Operations Section,Wuxi 214000,China)
Abstract:It is very important to predict the indicators of freight by a variety of algorithms for grasping the freight trends in the future.This article combines the methods of grey prediction and neural network forecast,and establishes a GNNM model based on the gray neural network,which has high reliability and practicality obtained from the satisfactory results of the prediction.
Keywords:railway freight  prediction model  gray neural network  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号