首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于分类回归树算法的上市公司会计信息失真识别研究
引用本文:张玲,杜庆宣.基于分类回归树算法的上市公司会计信息失真识别研究[J].财经理论与实践,2009,30(3).
作者姓名:张玲  杜庆宣
作者单位:湖南大学,工商管理学院,湖南,长沙,410082
摘    要:利用26个财务变量建立分类回归树模型对会计信息失真进行识别研究,结果表明所建模型对会计信息失真企业的正确识别率达到80%以上,能将第二类错误率控制在20%以下.实证还发现留存收益在总资产中的比率小于2%的公司很容易出现会计信息失真,最后作者利用8年数据对该结果进行检验,表明其识别能力非常出色.

关 键 词:会计信息失真  分类回归树  数据挖掘

Identification of False Financial Statements by Classification and Regression Trees
ZHANG Ling,DU Qing-xuan.Identification of False Financial Statements by Classification and Regression Trees[J].The Theory and Practice of Finance and Economics,2009,30(3).
Authors:ZHANG Ling  DU Qing-xuan
Institution:School of Business Administration;Hunan University;Changsha 410082;China
Abstract:In this paper,we established a CART model with 26 financial variables,and found that: the CART model can achieve over 80% correct recognition rate for distortion accounting information and control the second class mistake under 20%.We also found that companies whose ratio of retained earnings to total assets is less than 2% are easily involved in delivering a fraudulent financial statement to the public,and this result is proved to be effective with data from 2000 to 2007.
Keywords:Fraudulent Financial Statement  Classification and Regression Trees  Data Mining  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号