首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study integrates CBOE VIX Term Structure and VIX futures to simplify VIX option pricing in multifactor models. Exponential and hump volatility functions with one- to three-factor models of the VIX evolution are used to examine their pricing for VIX options across strikes and maturities. The results show that using exponential volatility functions presents an effective choice as pricing models for VIX calls, whereas hump volatility functions provide efficient out-of-sample valuation for most VIX puts, in particular with deep in-the-money and deep out-of-the-money. Pricing errors for calls can be further reduced with a two-factor model.  相似文献   

2.
Substantial progress has been made in developing more realistic option pricing models. Empirically, however, it is not known whether and by how much each generalization improves option pricing and hedging. We fill this gap by first deriving an option model that allows volatility, interest rates and jumps to be stochastic. Using S&P 500 options, we examine several alternative models from three perspectives: (1) internal consistency of implied parameters/volatility with relevant time-series data, (2) out-of-sample pricing, and (3) hedging. Overall, incorporating stochastic volatility and jumps is important for pricing and internal consistency. But for hedging, modeling stochastic volatility alone yields the best performance.  相似文献   

3.
We examine the economic benefits of using realized volatility to forecast future implied volatility for pricing, trading, and hedging in the S&P 500 index options market. We propose an encompassing regression approach to forecast future implied volatility, and hence future option prices, by combining historical realized volatility and current implied volatility. Although the use of realized volatility results in superior performance in the encompassing regressions and out-of-sample option pricing tests, we do not find any significant economic gains in option trading and hedging strategies in the presence of transaction costs.  相似文献   

4.
The contributions of this paper are threefold. The first contribution is the proposed logarithmic HAR (log-HAR) option-pricing model, which is more convenient compared with other option pricing models associated with realized volatility in terms of simpler estimation procedure. The second contribution is the test of the empirical implications of heterogeneous autoregressive model of the realized volatility (HAR)-type models in the S&P 500 index options market with comparison of the non-linear asymmetric GARCH option-pricing model, which is the best model in pricing options among generalized autoregressive conditional heteroskedastic-type models. The third contribution is the empirical analysis based on options traded from July 3, 2007 to December 31, 2008, a period covering a recent financial crisis. Overall, the HAR-type models successfully predict out-of-sample option prices because they are based on realized volatilities, which are closer to the expected volatility in financial markets. However, mixed results exist between the log-HAR and the heterogeneous auto-regressive gamma models in pricing options because the former is better than the latter in times of turmoil, whereas it is worse during the rather stable periods.  相似文献   

5.
Different models of pricing currency call and put options on futures are empirically tested. Option prices are determined using different models and compared to actual market prices. Option prices are determined using historical as well as implied volatility. The different models tested include both constant and stochastic interest rate models. To determine if the model prices are different from the market prices, regression analysis and paired t-tests are performed. To see which model misprices the least, root mean square errors are determined. It is found that better results are obtained when implied volatility is used. Stochastic interest rate models perform better than constant interest rate models.  相似文献   

6.
We compare several parametric and non-parametric approaches for modelling variance swap curves by conducting an in-sample and an out-of-sample analysis using market prices. The forecasted Heston model gives the best overall performance. Moreover, the static Heston model highlights some problems of stochastic volatility models in option pricing of forward starting products.  相似文献   

7.
VIX期权作为波动率衍生品能为金融机构提供有效的市场风险对冲工具。文献中对VIX期权定价的实证分析误差都很大,原因在于模型的选取误差以及校正方法和样本选取不妥。通过在VIX模型中加入均值回复因素和跳因素,可以使VIX过程更加合理,也可以使VIX期权定价精度更高。通过对VIX期权市场中间报价进行校正,得到了4个文献模型的参数估计,并比较4个模型的定价精度和正向隐含波动率偏斜拟合效果。  相似文献   

8.
We analyze the volatility surface vs. moneyness and time-to-expiration implied by MIBO options written on the MIB30, the most important Italian stock index. We specify and fit a number of models of the implied volatility surface and find that it has a rich and interesting structure that strongly departs from a constant volatility, Black-Scholes benchmark. This result is robust to alternative econometric approaches, including generalized least squares approaches that take into account both the panel structure of the data and the likely presence of heteroskedasticity and serial correlation in the random disturbances. Finally we show that the degree of pricing efficiency of this options market can strongly condition the results of the econometric analysis and therefore our understanding of the pricing mechanism underlying observed MIBO option prices. Applications to value-at-risk and portfolio choice calculations illustrate the importance of using arbitrage-free data only.  相似文献   

9.
This paper specifies a multivariate stochasticvolatility (SV) model for the S & P500 index and spot interest rateprocesses. We first estimate the multivariate SV model via theefficient method of moments (EMM) technique based on observations ofunderlying state variables, and then investigate the respective effects of stochastic interest rates, stochastic volatility, and asymmetric S & P500 index returns on option prices. We compute option prices using both reprojected underlying historical volatilities and the implied risk premiumof stochastic volatility to gauge each model's performance through direct comparison with observed market option prices on the index. Our major empirical findings are summarized as follows. First, while allowing for stochastic volatility can reduce the pricing errors and allowing for asymmetric volatility or leverage effect does help to explain the skewness of the volatility smile, allowing for stochastic interest rates has minimal impact on option prices in our case. Second, similar to Melino and Turnbull (1990), our empirical findings strongly suggest the existence of a non-zero risk premium for stochastic volatility of asset returns. Based on the implied volatility risk premium, the SV models can largely reduce the option pricing errors, suggesting the importance of incorporating the information from the options market in pricing options. Finally, both the model diagnostics and option pricing errors in our study suggest that the Gaussian SV model is not sufficientin modeling short-term kurtosis of asset returns, an SV model withfatter-tailed noise or jump component may have better explanatory power.  相似文献   

10.
In this paper we compare the out-of-sample performance of two common extensions of the Black–Scholes option pricing model, namely GARCH and stochastic volatility (SV). We calibrate the three models to intraday FTSE 100 option prices and apply two sets of performance criteria, namely out-of-sample valuation errors and Value-at-Risk (VaR) oriented measures. When we analyze the fit to observed prices, GARCH clearly dominates both SV and the benchmark Black–Scholes model. However, the predictions of the market risk from hypothetical derivative positions show sizable errors. The fit to the realized profits and losses is poor and there are no notable differences between the models. Overall, we therefore observe that the more complex option pricing models can improve on the Black–Scholes methodology only for the purpose of pricing, but not for the VaR forecasts.  相似文献   

11.
Financial models with stochastic volatility or jumps play a critical role as alternative option pricing models for the classical Black–Scholes model, which have the ability to fit different market volatility structures. Recently, machine learning models have elicited considerable attention from researchers because of their improved prediction accuracy in pricing financial derivatives. We propose a generative Bayesian learning model that incorporates a prior reflecting a risk-neutral pricing structure to provide fair prices for the deep ITM and the deep OTM options that are rarely traded. We conduct a comprehensive empirical study to compare classical financial option models with machine learning models in terms of model estimation and prediction using S&P 100 American put options from 2003 to 2012. Results indicate that machine learning models demonstrate better prediction performance than the classical financial option models. Especially, we observe that the generative Bayesian neural network model demonstrates the best overall prediction performance.  相似文献   

12.
《Pacific》2002,10(3):267-285
In this paper, we test the three-parameter symmetric variance gamma (SVG) option pricing model and the four-parameter asymmetric variance gamma (AVG) option pricing model empirically. Prices of the Hang Seng Index call options, which are of European style, are used as the data for the empirical test. Since the variance gamma option pricing model is developed for the pricing of European options, the empirical test gives a more conclusive answer than previous papers, which used American option data to the applicability of the VG models. The present study uses a large number of intraday option data, which span over a period of 3 years. Synchronous option and futures data are used throughout the study. Pairwise comparisons between the accuracy of model prices are carried out using both parametric and nonparametric methods.The conclusion is that the VG option pricing model performs marginally better than the Black–Scholes (BS) model. Under the historical approach, the VG models can moderately iron out some of the systematic biases inherent in the BS model. However, under the implied approach, the VG models continue to exhibit predictable biases and its overall performance in pricing and hedging is still far less than desirable.  相似文献   

13.
The paper examines the medium-term forecasting ability of several alternative models of currency volatility. The data period covers more than eight years of daily observations, January 1991 to March 1999, for the spot exchange rate, 1- and 3-month volatility of the DEM/JPY, GBP/DEM, GBP/USD, USD/CHF, USD/DEM and USD/JPY. Comparing with the results of ‘pure’ time series models, the reported work investigates whether market implied volatility data can add value in terms of medium-term forecasting accuracy. This is done using data directly available from the marketplace in order to avoid the potential biases arising from ‘backing out’ volatility from a specific option pricing model. On the basis of the over 34 000 out-of-sample forecasts produced, evidence tends to indicate that, although no single volatility model emerges as an overall winner in terms of forecasting accuracy, the ‘mixed’ models incorporating market data for currency volatility perform best most of the time.  相似文献   

14.
Traders in the nineteenth century appear to have priced options the same way that twenty-first-century traders price options. Empirical regularities relating implied volatility to realized volatility, stock prices, and other implied volatilities (including the volatility skew) are qualitatively the same in both eras. Modern pricing models and centralized exchanges have not fundamentally altered pricing behavior, but they have generated increased trading volume and a much closer conformity in the level of observed and model prices. The major change in pricing is the sharp decline in implied volatility relative to realized volatility, evident immediately upon the opening of the CBOE.  相似文献   

15.
This study presents a new method of pricing options on assets with stochastic volatility that is lattice based, and can easily accommodate early exercise for American options. Unlike traditional lattice methods, recombination is not a problem in the new model, and it is easily adapted to alternative volatility processes. Approximations are developed for European C.E.V. calls and American stochastic volatility calls. The application of the pricing model to exchange traded calls is also illustrated using a sample of market prices. Modifying the model to price American puts is straightforward, and the approach can easily be extended to other non-recombining lattices.  相似文献   

16.
We extend the benchmark nonlinear deterministic volatility regression functions of Dumas et al. (1998) to provide a semi-parametric method where an enhancement of the implied parameter values is used in the parametric option pricing models. Besides volatility, skewness and kurtosis of the asset return distribution can also be enhanced. Empirical results, using closing prices of the S&P 500 index call options (in one day ahead out-of-sample pricing tests), strongly support our method that compares favorably with a model that admits stochastic volatility and random jumps. Moreover, it is found to be superior in various robustness tests. Our semi-parametric approach is an effective remedy to the curse of dimensionality presented in nonparametric estimation and its main advantage is that it delivers theoretically consistent option prices and hedging parameters. The economic significance of the approach is tested in terms of hedging, where the evaluation and estimation loss functions are aligned.  相似文献   

17.
The Homoscedastic Gamma (HG) model characterizes the distribution of returns by its mean, variance and an independent skewness parameter. The HG model preserves the parsimony and the closed form of the Black–Scholes–Merton (BSM) while introducing the implied volatility (IV) and skewness surface. Varying the skewness parameter of the HG model can restore the symmetry of IV curves. Practitioner’s variants of the HG model improve pricing (in-sample and out-of-sample) and hedging performances relative to practitioners’ BSM models, with as many or less parameters. The pattern of improvements in Delta-Hedged gains across strike prices accord with predictions from the HG model. These results imply that expanding around the Gaussian density does not offer sufficient flexibility to match the skewness implicit in options. Consistent with the model, we also find that conditioning on implied skewness increases the predictive power of the volatility spread for excess returns.  相似文献   

18.
We consider the option pricing model proposed by Mancino and Ogawa, where the implementation of dynamic hedging strategies has a feedback impact on the price process of the underlying asset. We present numerical results showing that the smile and skewness patterns of implied volatility can actually be reproduced as a consequence of dynamical hedging. The simulations are performed using a suitable semi-implicit finite difference method. Moreover, we perform a calibration of the nonlinear model to market data and we compare it with more popular models, such as the Black–Scholes formula, the Jump-Diffusion model and Heston's model. In judging the alternative models, we consider the following issues: (i) the consistency of the implied structural parameters with the times-series data; (ii) out-of-sample pricing; and (iii) parameter uniformity across different moneyness and maturity classes. Overall, nonlinear feedback due to hedging strategies can, at least in part, contribute to the explanation from a theoretical and quantitative point of view of the strong pricing biases of the Black–Scholes formula, although stochastic volatility effects are more important in this regard.  相似文献   

19.
We utilise novel functional time series (FTS) techniques to characterise and forecast implied volatility in foreign exchange markets. In particular, we examine the daily implied volatility curves of FX options, namely; Euro/United States Dollar, Euro/British Pound, and Euro/Japanese Yen. The FTS model is shown to produce both realistic and plausible implied volatility shapes that closely match empirical data during the volatile 2006–2013 period. Furthermore, the FTS model significantly outperforms implied volatility forecasts produced by traditionally employed parametric models. The evaluation is performed under both in-sample and out-of-sample testing frameworks with our findings shown to be robust across various currencies, moneyness segments, contract maturities, forecasting horizons, and out-of-sample window lengths. The economic significance of the results is highlighted through the implementation of a simple trading strategy.  相似文献   

20.
This paper uses information on VIX to improve the empirical performance of GARCH models for pricing options on the S&P 500. In pricing multiple cross-sections of options, the models’ performance can clearly be improved by extracting daily spot volatilities from the series of VIX rather than by linking spot volatility with different dates by using the series of the underlying’s returns. Moreover, in contrast to traditional returns-based Maximum Likelihood Estimation (MLE), a joint MLE with returns and VIX improves option pricing performance, and for NGARCH, joint MLE can yield empirically almost the same out-of-sample option pricing performance as direct calibration does to in-sample options, but without costly computations. Finally, consistently with the existing research, this paper finds that non-affine models clearly outperform affine models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号