首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the pricing performance of VIX option models. Such models possess a wide‐range of underlying characteristics regarding the behavior of both the S&P500 index and the underlying VIX. Our tests employ three representative models for VIX options: Whaley ( 1993 ), Grunbichler and Longstaff ( 1996 ), Carr and Lee ( 2007 ), Lin and Chang ( 2009 ), who test four stochastic volatility models, as well as to previous simulation results of VIX option models. We find that no model has small pricing errors over the entire range of strike prices and times to expiration. In particular, out‐of‐the‐money VIX options are difficult to price, with Grunbichler and Longstaff's mean‐reverting model producing the smallest dollar errors in this category. Whaley's Black‐like option model produces the best results for in‐the‐money VIX options. However, the Whaley model does under/overprice out‐of‐the‐money call/put VIX options, which is opposite the behavior of stock index option pricing models. VIX options exhibit a volatility skew opposite the skew of index options. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark31:251–281, 2011  相似文献   

2.
This paper analyzes the impact of intraday trading activity on option prices in the Volatility Index (VIX) options market. Our results show that there is a temporal relationship between net buying pressure (NBP) and changes in implied volatility of VIX options. Moreover, an increase in NBPs lowers the next-day delta-hedged option returns. Using several measures proxying for limits to arbitrage, the average levels of the implied volatility curve rise when limits to arbitrage are severe. A trading strategy in the VIX futures market constructed by using the NBP generates an average annualized return of 10.09%.  相似文献   

3.
We develop a new generalized autoregressive conditional heteroskedasticity (GARCH) model that accounts for the information spillover between two markets. This model is used to detect the usefulness of the CBOE volatility index (VIX) for improving the performance of volatility forecasting and option pricing. We find the significant ability of VIX to predict stock volatility both in-sample and out-of-sample. VIX information also helps to greatly reduce the option pricing error. The proposed volatility spillover GARCH model performs better than the related approaches proposed by Kanniainen et al. (2014, J Bank Finance, 43, pp. 200-211) and P. Christoffersen et al. (2014, J Financ Quant Anal, 49, pp. 663–697).  相似文献   

4.
In this paper, we extend the 3/2 model for VIX studied by Goard and Mazur and introduce the generalized 3/2 and 1/2 classes of volatility processes. Under these models, we study the pricing of European and American VIX options, and for the latter, we obtain an early exercise premium representation using a free‐boundary approach and local time‐space calculus. The optimal exercise boundary for the volatility is obtained as the unique solution to an integral equation of Volterra type. We also consider a model mixing these two classes and formulate the corresponding optimal stopping problem in terms of the observed factor process. The price of an American VIX call is then represented by an early exercise premium formula. We show the existence of a pair of optimal exercise boundaries for the factor process and characterize them as the unique solution to a system of integral equations.  相似文献   

5.
This study analyses the new market for trading volatility; VIX futures. We first use market data to establish the relationship between VIX futures prices and the index itself. We observe that VIX futures and VIX are highly correlated; the term structure of average VIX futures prices is upward sloping, whereas the term structure of VIX futures volatility is downward sloping. To establish a theoretical relationship between VIX futures and VIX, we model the instantaneous variance using a simple square root mean‐reverting process with a stochastic long‐term mean level. Using daily calibrated long‐term mean and VIX, the model gives good predictions of VIX futures prices under normal market situation. These parameter estimates could be used to price VIX options. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark 30:809–833, 2010  相似文献   

6.
We consider a modeling setup where the volatility index (VIX) dynamics are explicitly computable as a smooth transformation of a purely diffusive, multidimensional Markov process. The framework is general enough to embed many popular stochastic volatility models. We develop closed‐form expansions and sharp error bounds for VIX futures, options, and implied volatilities. In particular, we derive exact asymptotic results for VIX‐implied volatilities, and their sensitivities, in the joint limit of short time‐to‐maturity and small log‐moneyness. The expansions obtained are explicit based on elementary functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol‐of‐vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has previously been adopted to derive approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection of model specifications.  相似文献   

7.
This paper studies the forecasting of volatility index (VIX) and the pricing of its futures by a generalized affine realized volatility model proposed by Christoffersen et al. This model is a weighted average of a GARCH and a pure realized variance (RV) model that incorporates each volatility component into the new dynamics. We rewrite the VIX in terms of both volatility components and then derive closed‐form formulas for the VIX forecasting and its futures pricing. Our empirical studies find that a unification of the GARCH and the RV in the modeling substantially improves the forecasting of this index and the pricing of its futures.  相似文献   

8.
We consider an asset whose risk‐neutral dynamics are described by a general class of local‐stochastic volatility models and derive a family of asymptotic expansions for European‐style option prices and implied volatilities. We also establish rigorous error estimates for these quantities. Our implied volatility expansions are explicit; they do not require any special functions nor do they require numerical integration. To illustrate the accuracy and versatility of our method, we implement it under four different model dynamics: constant elasticity of variance local volatility, Heston stochastic volatility, three‐halves stochastic volatility, and SABR local‐stochastic volatility.  相似文献   

9.
We propose a flexible framework for modeling the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across strikes and maturities as well as options on the VIX volatility index.  相似文献   

10.
We consider call option prices close to expiry in diffusion models, in an asymptotic regime (“moderately out of the money”) that interpolates between the well‐studied cases of at‐the‐money and out‐of‐the‐money regimes. First and higher order small‐time moderate deviation estimates of call prices and implied volatilities are obtained. The expansions involve only simple expressions of the model parameters, and we show how to calculate them for generic local and stochastic volatility models. Some numerical computations for the Heston model illustrate the accuracy of our results.  相似文献   

11.
On the basis of the theory of a wedge between the physical and risk‐neutral conditional volatilities in Christoffersen, P., Elkamhi, R., Feunou, B., & Jacobs, K. (2010), we develop a modification of the GARCH option pricing model with the filtered historical simulation proposed in Barone‐Adesi, G., Engle, R. F., & Mancini, L. (2008). The one‐day‐ahead conditional volatilities under physical and risk‐neutral measures are the same in the previous model, but should have been allowed to be different. Using extensive data on S&P 500 index options, our approach, which employs one‐day‐ahead risk‐neutral conditional volatility estimated from the cross‐section of the option prices (in contrast to the existing GARCH option pricing models), maintains theoretical consistency under conditional non‐normality, and improves the empirical performances. Remarkably, the risk‐neutral volatility dynamics are stable over time in this model. In addition, the comparison between the VIX index and the risk‐neutral integrated volatility economically validates our approach. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark 33:1–28, 2013  相似文献   

12.
Bounds on European Option Prices under Stochastic Volatility   总被引:5,自引:0,他引:5  
In this paper we consider the range of prices consistent with no arbitrage for European options in a general stochastic volatility model. We give conditions under which the infimum and the supremum of the possible option prices are equal to the intrinsic value of the option and to the current price of the stock, respectively, and show that these conditions are satisfied in most of the stochastic volatility models from the financial literature. We also discuss properties of Black–Scholes hedging strategies in stochastic volatility models where the volatility is bounded.  相似文献   

13.
Substantial progress has been made in developing more realistic option pricing models for S&P 500 index (SPX) options. Empirically, however, it is not known whether and by how much each generalization of SPX price dynamics improves VIX option pricing. This article fills this gap by first deriving a VIX option model that reconciles the most general price processes of the SPX in the literature. The relative empirical performance of several models of distinct interest is examined. Our results show that state‐dependent price jumps and volatility jumps are important for pricing VIX options. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 29:523–543, 2009  相似文献   

14.
We propose a new stochastic volatility model by allowing for a cascading structure of volatility components. The model, under a minor assumption, allows us to add as many components as desired with no additional parameters, effectively defeating the curse of dimensionality often encountered in traditional models. We derive a semi-closed-form solution to the VIX futures price, and find that our six-factor model with only six parameters can closely fit spot VIX and VIX futures prices from 2004 to 2015 and produce out-of-sample pricing errors of magnitudes similar to those of in-sample errors.  相似文献   

15.
We analyze the behavior of the implied volatility smile for options close to expiry in the exponential Lévy class of asset price models with jumps. We introduce a new renormalization of the strike variable with the property that the implied volatility converges to a nonconstant limiting shape, which is a function of both the diffusion component of the process and the jump activity (Blumenthal–Getoor) index of the jump component. Our limiting implied volatility formula relates the jump activity of the underlying asset price process to the short‐end of the implied volatility surface and sheds new light on the difference between finite and infinite variation jumps from the viewpoint of option prices: in the latter, the wings of the limiting smile are determined by the jump activity indices of the positive and negative jumps, whereas in the former, the wings have a constant model‐independent slope. This result gives a theoretical justification for the preference of the infinite variation Lévy models over the finite variation ones in the calibration based on short‐maturity option prices.  相似文献   

16.
We derive analytic series representations for European option prices in polynomial stochastic volatility models. This includes the Jacobi, Heston, Stein–Stein, and Hull–White models, for which we provide numerical case studies. We find that our polynomial option price series expansion performs as efficiently and accurately as the Fourier‐transform‐based method in the nested affine cases. We also derive and numerically validate series representations for option Greeks. We depict an extension of our approach to exotic options whose payoffs depend on a finite number of prices.  相似文献   

17.
This paper compares the information extracted from the S&P 500, CBOE VIX, and CBOE SKEW indices for the S&P 500 index option pricing. Based on our empirical analysis, VIX is a very informative index for option prices. Whether adding the SKEW or the VIX term structure can improve the option pricing performance depends on the model we choose. Roughly speaking, the VIX term structure is informative for some models, while the SKEW is very noisy and does not contain much important information for option prices. This paper also extends Zhang et al. (2017, J Futures Markets, 37, 211–237) into three typical affine models.  相似文献   

18.
Using an expansion of the transition density function of a one‐dimensional time inhomogeneous diffusion, we obtain the first‐ and second‐order terms in the short time asymptotics of European call option prices. The method described can be generalized to any order. We then use these option prices approximations to calculate the first‐ and second‐order deviation of the implied volatility from its leading value and obtain approximations which we numerically demonstrate to be highly accurate.  相似文献   

19.
Using an extended LHARG model proposed by Majewski et al. (2015, J Econ, 187, 521–531), we derive the closed-form pricing formulas for both the Chicago Board Options Exchange VIX term structure and VIX futures with different maturities. Our empirical results suggest that the quarterly and yearly components of lagged realized volatility should be added into the model to capture the long-term volatility dynamics. By using the realized volatility based on high-frequency data, the proposed model provides superior pricing performance compared with the classic Heston–Nandi GARCH model under a variance-dependent pricing kernel, both in-sample and out-of-sample. The improvement is more pronounced during high volatility periods.  相似文献   

20.
Exact explicit solution of the log-normal stochastic volatility (SV) option model has remained an open problem for two decades. In this paper, I consider the case where the risk-neutral measure induces a martingale volatility process, and derive an exact explicit solution to this unsolved problem which is also free from any inverse transforms. A representation of the asset price shows that its distribution depends on that of two random variables, the terminal SV as well as the time average of future stochastic variances. Probabilistic methods, using the author's previous results on stochastic time changes, and a Laplace–Girsanov Transform technique are applied to produce exact explicit probability distributions and option price formula. The formulae reveal interesting interplay of forces between the two random variables through the correlation coefficient. When the correlation is set to zero, the first random variable is eliminated and the option formula gives the exact formula for the limit of the Taylor series in Hull and White's (1987) approximation. The SV futures option model, comparative statics, price comparisons, the Greeks and practical and empirical implementation and evaluation results are also presented. A PC application was developed to fit the SV models to current market prices, and calculate other option prices, and their Greeks and implied volatilities (IVs) based on the results of this paper. This paper also provides a solution to the option implied volatility problem, as the empirical studies show that, the SV model can reproduce market prices, better than Black–Scholes and Black-76 by up to 2918%, and its IV curve can reproduce that of market prices very closely, by up to within its 0.37%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号