共查询到16条相似文献,搜索用时 15 毫秒
1.
We study a robust portfolio optimization problem under model uncertainty for an investor with logarithmic or power utility. The uncertainty is specified by a set of possible Lévy triplets, that is, possible instantaneous drift, volatility, and jump characteristics of the price process. We show that an optimal investment strategy exists and compute it in semi‐closed form. Moreover, we provide a saddle point analysis describing a worst‐case model. 相似文献
2.
Marcel Nutz 《Mathematical Finance》2012,22(4):690-709
We study power utility maximization for exponential Lévy models with portfolio constraints, where utility is obtained from consumption and/or terminal wealth. For convex constraints, an explicit solution in terms of the Lévy triplet is constructed under minimal assumptions by solving the Bellman equation. We use a novel transformation of the model to avoid technical conditions. The consequences for q‐optimal martingale measures are discussed as well as extensions to nonconvex constraints. 相似文献
3.
The short‐time asymptotic behavior of option prices for a variety of models with jumps has received much attention in recent years. In this work, a novel second‐order approximation for at‐the‐money (ATM) option prices is derived for a large class of exponential Lévy models with or without Brownian component. The results hereafter shed new light on the connection between both the volatility of the continuous component and the jump parameters and the behavior of ATM option prices near expiration. In the presence of a Brownian component, the second‐order term, in time‐t, is of the form , with d2 only depending on Y, the degree of jump activity, on σ, the volatility of the continuous component, and on an additional parameter controlling the intensity of the “small” jumps (regardless of their signs). This extends the well‐known result that the leading first‐order term is . In contrast, under a pure‐jump model, the dependence on Y and on the separate intensities of negative and positive small jumps are already reflected in the leading term, which is of the form . The second‐order term is shown to be of the form and, therefore, its order of decay turns out to be independent of Y. The asymptotic behavior of the corresponding Black–Scholes implied volatilities is also addressed. Our method of proof is based on an integral representation of the option price involving the tail probability of the log‐return process under the share measure and a suitable change of probability measure under which the pure‐jump component of the log‐return process becomes a Y‐stable process. Our approach is sufficiently general to cover a wide class of Lévy processes, which satisfy the latter property and whose Lévy density can be closely approximated by a stable density near the origin. Our numerical results show that the first‐order term typically exhibits rather poor performance and that the second‐order term can significantly improve the approximation's accuracy, particularly in the absence of a Brownian component. 相似文献
4.
This paper presents hedging strategies for European and exotic options in a Lévy market. By applying Taylor’s theorem, dynamic hedging portfolios are constructed under different market assumptions, such as the existence of power jump assets or moment swaps. In the case of European options or baskets of European options, static hedging is implemented. It is shown that perfect hedging can be achieved. Delta and gamma hedging strategies are extended to higher moment hedging by investing in other traded derivatives depending on the same underlying asset. This development is of practical importance as such other derivatives might be readily available. Moment swaps or power jump assets are not typically liquidly traded. It is shown how minimal variance portfolios can be used to hedge the higher order terms in a Taylor expansion of the pricing function, investing only in a risk‐free bank account, the underlying asset, and potentially variance swaps. The numerical algorithms and performance of the hedging strategies are presented, showing the practical utility of the derived results. 相似文献
5.
Vladimir K. Kaishev 《Mathematical Finance》2013,23(2):217-247
We consider a new class of processes, called LG processes, defined as linear combinations of independent gamma processes. Their distributional and path‐wise properties are explored by following their relation to polynomial and Dirichlet (B‐)splines. In particular, it is shown that the density of an LG process can be expressed in terms of Dirichlet (B‐)splines, introduced independently by Ignatov and Kaishev and Karlin, Micchelli, and Rinott. We further show that the well‐known variance gamma (VG) process, introduced by Madan and Seneta, and the bilateral gamma (BG) process, recently considered by Küchler and Tappe are special cases of an LG process. Following this LG interpretation, we derive new (alternative) expressions for the VG and BG densities and consider their numerical properties. The LG process has two sets of parameters, the B‐spline knots and their multiplicities, and offers further flexibility in controlling the shape of the Levy density, compared to the VG and the BG processes. Such flexibility is often desirable in practice, which makes LG processes interesting for financial and insurance applications. Multivariate LG processes are also introduced and their relation to multivariate Dirichlet and simplex splines is established. Expressions for their joint density, the underlying LG‐copula, the characteristic, moment and cumulant generating functions are given. A method for simulating LG sample paths is also proposed, based on the Dirichlet bridge sampling of gamma processes, due to Kaishev and Dimitriva. A method of moments for estimation of the LG parameters is also developed. Multivariate LG processes are shown to provide a competitive alternative in modeling dependence, compared to the various multivariate generalizations of the VG process, proposed in the literature. Application of multivariate LG processes in modeling the joint dynamics of multiple exchange rates is also considered. 相似文献
6.
In this paper, we develop a framework for discretely compounding interest rates that is based on the forward price process approach. This approach has a number of advantages, in particular in the current market environment. Compared to the classical as well as the Lévy Libor market model, it allows in a natural way for negative interest rates and has superb calibration properties even in the presence of extremely low rates. Moreover, the measure changes along the tenor structure are significantly simplified. These properties make it an excellent base for a postcrisis multiple curve setup. Two variants for multiple curve constructions based on the multiplicative spreads are discussed. Time‐inhomogeneous Lévy processes are used as driving processes. An explicit formula for the valuation of caps is derived using Fourier transform techniques. Relying on the valuation formula, we calibrate the two model variants to market data. 相似文献
7.
EFFICIENT PRICING OF BARRIER OPTIONS AND CREDIT DEFAULT SWAPS IN LÉVY MODELS WITH STOCHASTIC INTEREST RATE 下载免费PDF全文
Recently, advantages of conformal deformations of the contours of integration in pricing formulas for European options have been demonstrated in the context of wide classes of Lévy models, the Heston model, and other affine models. Similar deformations were used in one‐factor Lévy models to price options with barrier and lookback features and credit default swaps (CDSs). In the present paper, we generalize this approach to models, where the dynamics of the assets is modeled as , where X is a Lévy process, and the interest rate is stochastic. Assuming that X and r are independent, and , the infinitesimal generator of the pricing semigroup in the model for the short rate, satisfies weak regularity conditions, which hold for popular models of the short rate, we develop a variation of the pricing procedure for Lévy models which is almost as fast as in the case of the constant interest rate. Numerical examples show that about 0.15 second suffices to calculate prices of 8 options of same maturity in a two‐factor model with the error tolerance and less; in a three‐factor model, accuracy of order 0.001–0.005 is achieved in about 0.2 second. Similar results are obtained for quanto CDS, where an additional stochastic factor is the exchange rate. We suggest a class of Lévy models with the stochastic interest rate driven by 1–3 factors, which allows for fast calculations. This class can satisfy the current regulatory requirements for banks mandating sufficiently sophisticated credit risk models. 相似文献
8.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives. 相似文献
9.
In this paper, we study perpetual American call and put options in an exponential Lévy model. We consider a negative effective discount rate that arises in a number of financial applications including stock loans and real options, where the strike price can potentially grow at a higher rate than the original discount factor. We show that in this case a double continuation region arises and we identify the two critical prices. We also generalize this result to multiple stopping problems of Swing type, that is, when successive exercise opportunities are separated by i.i.d. random refraction times. We conduct an extensive numerical analysis for the Black–Scholes model and the jump‐diffusion model with exponentially distributed jumps. 相似文献
10.
In this paper, we present an algorithm for pricing barrier options in one‐dimensional Markov models. The approach rests on the construction of an approximating continuous‐time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing it for a range of models, including a local Lévy process and a local volatility jump‐diffusion. We also provide a convergence proof and error estimates for this algorithm. 相似文献
11.
Using positive semidefinite supOU (superposition of Ornstein–Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modeling long range dependence effects. The finiteness of moments and the second‐order structure of the volatility, the log‐ returns, as well as their “squares” are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein–Uhlenbeck type stochastic volatility model behave under linear transformations. In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modeling approach. 相似文献
12.
We consider the problem of valuation of American options written on dividend‐paying assets whose price dynamics follow a multidimensional exponential Lévy model. We carefully examine the relation between the option prices, related partial integro‐differential variational inequalities, and reflected backward stochastic differential equations. In particular, we prove regularity results for the value function and obtain the early exercise premium formula for a broad class of payoff functions. 相似文献
13.
We analyze the behavior of the implied volatility smile for options close to expiry in the exponential Lévy class of asset price models with jumps. We introduce a new renormalization of the strike variable with the property that the implied volatility converges to a nonconstant limiting shape, which is a function of both the diffusion component of the process and the jump activity (Blumenthal–Getoor) index of the jump component. Our limiting implied volatility formula relates the jump activity of the underlying asset price process to the short‐end of the implied volatility surface and sheds new light on the difference between finite and infinite variation jumps from the viewpoint of option prices: in the latter, the wings of the limiting smile are determined by the jump activity indices of the positive and negative jumps, whereas in the former, the wings have a constant model‐independent slope. This result gives a theoretical justification for the preference of the infinite variation Lévy models over the finite variation ones in the calibration based on short‐maturity option prices. 相似文献
14.
This paper presents a novel method to price discretely monitored single- and double-barrier options in Lévy process-based models. The method involves a sequential evaluation of Hilbert transforms of the product of the Fourier transform of the value function at the previous barrier monitoring date and the characteristic function of the (Esscher transformed) Lévy process. A discrete approximation with exponentially decaying errors is developed based on the Whittaker cardinal series (Sinc expansion) in Hardy spaces of functions analytic in a strip. An efficient computational algorithm is developed based on the fast Hilbert transform that, in turn, relies on the FFT-based Toeplitz matrix–vector multiplication. Our method also provides a natural framework for credit risk applications, where the firm value follows an exponential Lévy process and default occurs at the first time the firm value is below the default barrier on one of a discrete set of monitoring dates. 相似文献
15.
We consider risk‐averse investors with different levels of anxiety about asset price drawdowns. The latter is defined as the distance of the current price away from its best performance since inception. These drawdowns can increase either continuously or by jumps, and will contribute toward the investor's overall impatience when breaching the investor's private tolerance level. We investigate the unusual reactions of investors when aiming to sell an asset under such adverse market conditions. Mathematically, we study the optimal stopping of the utility of an asset sale with a random discounting that captures the investor's overall impatience. The random discounting is given by the cumulative amount of time spent by the drawdowns in an undesirable high region, fine‐tuned by the investor's personal tolerance and anxiety about drawdowns. We prove that in addition to the traditional take‐profit sales, the real‐life employed stop‐loss orders and trailing stops may become part of the optimal selling strategy, depending on different personal characteristics. This paper thus provides insights on the effect of anxiety and its distinction with traditional risk aversion on decision making. 相似文献
16.
In this paper, we study the excursions of Bessel and Cox–Ingersoll–Ross (CIR) processes with dimensions . We obtain densities for the last passage times and meanders of the processes. Using these results, we prove a variation of the Azéma martingale for the Bessel and CIR processes based on excursion theory. Furthermore, we study their Parisian excursions, and generalize previous results on the Parisian stopping time of Brownian motion to that of the Bessel and CIR processes. We obtain explicit formulas and asymptotic results for the densities of the Parisian stopping times, and develop exact simulation algorithms to sample the Parisian stopping times of Bessel and CIR processes. We introduce a new type of bond, the zero‐coupon Parisian bond. The buyer of such a bond is betting against zero interest rates, while the seller is effectively hedging against a period where interest rates fluctuate around 0. Using our results, we propose two methods for pricing these bonds and provide numerical examples. 相似文献