首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild lake trout recently began to appear in abundance in Lake Champlain after over 40 years of stocking, providing an opportunity to compare the seasonal diet of wild and stocked juveniles. We sampled 2,349 age-0 to age-3 lake trout collected in bottom trawls from April to November 2015–2018, and examined the relationship between diet and spatial heterogeneity in abundance of wild and stocked juveniles. Stocked fish were, on average, the size of wild fish one year older. Wild juveniles had fewer empty stomachs and more items per stomach than stocked fish at each age. Mysis diluviana dominated the diet of age-0 and age-1 wild lake trout until they began to consume fish in fall at age-1. In contrast, the diet of newly-stocked fish (age-1) comprised rainbow smelt (Osmerus mordax), slimy sculpin (Cottus cognatus), alewife (Alosa pseudoharengus), with Mysis only abundant in summer and fall. Number and composition of diet items varied among geographic areas of the lake but did not explain differences in abundance of wild or stocked fish by area. Diet overlap was high between wild and stocked fish for each age class at each season, except in fall at age-0. Differences in the diet of wild and stocked juveniles likely reflect effects of early rearing experience. Recruitment of wild lake trout depends on availability and abundance of Mysis, but our diet data do not provide insight to explain why recruitment is finally occurring after a protracted delay.  相似文献   

2.
After 42 years of stocking in Lake Champlain, recruitment of wild juvenile lake trout (Salvelinus namaycush) was first observed in 2015. Abundance of wild lake trout juveniles was spatially heterogeneous. Recruitment of wild fish to age-1 and subsequent survival are likely related to growth including overwinter growth. We hypothesized that growth potential or growth-related mortality of wild and stocked fish may explain spatial differences in abundance. We collected juvenile (age-0 to 3) lake trout by bottom trawling in the central, north, and south Main Lake every 2–4 weeks during the ice-free season, 2015–2018. The percentage of wild juveniles increased from 27.8% of the total catch in 2015 to 65.7% in 2018. Rates of growth in length and change in condition were compared in wild versus stocked lake trout, among sampling areas, and between seasons (sampling season relative to winter). Wild juveniles grew equally or faster in length than stocked juveniles at the same age, but changed more slowly in condition. There was a higher percentage of wild juveniles in the central sampling area than the north and south, but no differences in growth among sampling areas. Wild and stocked fish grew in length over winter, but most cohorts (6 of 7) maintained or increased condition. Results indicate high growth potential of wild juvenile lake trout and progress toward population restoration.  相似文献   

3.
Lake trout (Salvelinus namaycush) reared in hatcheries are exposed to an environment and feeding regime that is different from wild lake trout, and are stocked at substantially larger sizes with higher lipid reserves. In addition to differences in diet and growth, this early experience may alter habitat use compared to the wild cohort. We used seasonal data on the depth and temperature distribution of wild and stocked juvenile lake trout to test for differences in habitat use and inform sampling strategies to evaluate annual recruitment. Bottom trawling was conducted from 2015 to 2019 in the central basin of Lake Champlain every two to four weeks during the ice-free season. Differences in distribution of wild and stocked lake trout were most pronounced during thermal stratification, when wild juveniles were more abundant than stocked juveniles at shallower depths and warmer temperatures and stocked juveniles were more abundant at deeper depths and colder temperatures. Temperature preferences may be a consequence of different early rearing environments; wild lake trout are acclimated to lake temperatures and forage, whereas stocked fish entered the lake with high lipid content and little foraging experience. Unbiased assessment of the proportion of wild lake trout and growth and survival of the entire juvenile lake trout population using bottom trawl sampling should either take place in the pre- and post-stratification seasons when wild and stocked fish are at the same depths, or include the full range of depths and temperatures that wild and stocked fish occupy during the stratified period.  相似文献   

4.
The rehabilitation of extirpated lake trout (Salvelinus namaycush) in the Great Lakes and Lake Champlain has been hindered by various biological and physiological impediments. Efforts to restore a lake trout fishery to Lake Champlain include hatchery stocking and sea lamprey control. Despite these management actions, there is little evidence of recruitment of naturally-produced fish in annual fall assessments. Spawning occurs at multiple sites lake-wide in Lake Champlain, with extremely high egg and fry densities, yet sampling for juvenile lake trout has only yielded fin-clipped fish. To investigate this recruitment bottleneck, we assessed predation pressure by epi-benthic fish on emergent fry on two spawning reefs and the subsequent survival and dispersal of fry in potential nursery areas. Epi-benthic predators were sampled with 2-h gillnet sets at two small, shallow sites in Lake Champlain throughout the 24-h cycle, with an emphasis on dusk and dawn hours. In total, we documented seven different species that had consumed fry, with consumption rates from 1 to 17 fry per stomach. Rock bass and yellow perch dominated the near-shore fish community and were the most common fry predators. Predator presence and consumption of fry was highest between 19:00 and 07:00. Predators only consumed fry when fry relative abundance was above a threshold of 1 fry trap− 1 day− 1. We used an otter trawl to sample for post-emergent fry adjacent to the reef, but did not capture any age-0 lake trout. Due to the observed predation pressure by multiple littoral, species on shallow spawning reefs, lake trout restoration may be more successful at deep, offshore sites.  相似文献   

5.
Lake trout Salvelinus namaycush fry treated with heated water to create thermal marks in their otoliths were stocked at Sve's Reef in Minnesota waters of Lake Superior in 1994, 1995, and 1996. These fish began to reach maturity in 2000, and were vulnerable to annual assessment gill nets set at several locations along the Minnesota shoreline. Captured fish also included fin-clipped lake trout stocked as yearlings, and naturally reproduced (wild) lake trout. Otoliths from 3106 unclipped lake trout were aged and examined for thermal marks from 2000 to 2007, of which 1152 were from the target year classes (1994–1996). Thermal marks were found in otoliths from 64 fish, or 5.6% of those in the target year classes, demonstrating that stocked fry contributed to the adult lake trout population in Minnesota waters. Although numbers of recaptured fish were too low to demonstrate statistically significant differences, higher recapture rates of marked fish at Sve's Reef in fall and spawning assessments suggest that these fish may have imprinted at the stocking location and homed back to this area to spawn. Wild lake trout populations in Lake Superior may be approaching fully rehabilitated levels, but recovery in the lower Great Lakes has progressed more slowly, and evidence of success with fry stocking could benefit those populations.  相似文献   

6.
Identification of fish stocks plays an important role in fisheries management, but stock identification often depends on the techniques used and the management goals as much as on actual population structure. Historically, stocks were identified by place of capture, population demography and morphology, but genetic stock identification has become a standard approach. Here, we evaluate the stock structure of rainbow smelt (Osmerus mordax) in three basins of Lake Champlain separated by causeways using genotype data from six microsatellite loci and 26 years of demographic data. No genetic differences among rainbow smelt from the different basins were evident, which suggests that gene flow occurs among basins. However, length, age, and catch-per-unit-effort of rainbow smelt suggests asynchronous population dynamics in the different basins, and thus each basin may hold populations that are at least partially isolated from one another. Consequently, we conclude that while rainbow smelt in Lake Champlain consist of at least three demographic stocks they may form only a single genetic stock. Our results concur with other studies that suggest care should be taken when only a single method of stock identification is used.  相似文献   

7.
Restoration of lake trout Salvelinus namaycush stocks in Lake Huron is a fish community objective developed to promote sustainable fish communities in the lake. Between 1985 and 2004, 12.65 million lake trout were stocked into Lake Huron representing eight different genetic strains. Collections of bona fide wild fish in USGS surveys have increased in recent years and this study examined the ancestry and diet of fish collected between 2004 and 2006 to explore the ecological role they occupy in Lake Huron. Analysis of microsatellite DNA revealed that both pure strain and inter-strain hybrids were observed, and the majority of fish were classified as Seneca Lake strain or Seneca Lake hybrids. Diets of 50 wild age-0 lake trout were examined. Mysis, chironomids, and zooplankton were common prey items of wild age-0 lake trout. These results indicate that stocked fish are successfully reproducing in Lake Huron indicating a level of restoration success. However, continued changes to the benthic macroinvertebrate community, particularly declines of Mysis, may limit growth and survival of wild fish and hinder restoration efforts.  相似文献   

8.
Wild reproduction by stocked lake trout Salvelinus namaycush in Lake Ontario has yet to produce a self-sustaining population, requiring a reliance on stocking. Once released, age-1 juvenile lake trout are not typically surveyed until age-2, creating a gap in knowledge of fine-scale post-release behaviors. A method to track fine-scale movements and estimate mortality of juvenile lake trout could complement standard survey methods and benefit management decisions regarding stocking locations. We used acoustic telemetry to estimate post-stocking mortality and observe fine-scale spatial and temporal movements of 38 hatchery-reared, age-1 lake trout from an offshore stocking site in the eastern basin of Lake Ontario from 2017 to 2018. Cumulative post-stocking mortality was estimated at 5.3%, 10.5%, and 26.3% after one week, one month and one year, respectively. The majority of lake trout (68.4%) emigrated from the stocking location within two months and entered deep water (~50 m) once warm-water incursions at the stocking site exceeded lake trout thermal preferences (15 °C). Lake trout made large movements (i.e., median 1.9 km, maximum 12.4 km straight-line distance) within the first hour post-release and had an average swimming speed of 1.64 km?hr?1over the first day. There was no statistically significant relationship between total distance traveled and time of day, although distance traveled tended to be greater during crepuscular and dark periods compared to daylight. Our results provide a conservative estimate of post-release mortality and reveal behaviors of hatchery-reared juvenile lake trout that may be helpful when selecting stocking locations beneficial to restoration program goals.  相似文献   

9.
Fish stocking programs designed for species rehabilitation aim to match the strains being stocked with the environments the fish will inhabit. The ability of different lake trout Salvelinus namaycush populations to adjust their physiological performance over a broad range of environmental conditions will be advantageous as water temperatures rise with climate warming. This study compares the adaptive physiological potential of 6 strains of lake trout stocked within the Laurentian Great Lakes by comparing growth, metabolic and cardiovascular performance, and organ-system tradeoffs across a temperature gradient. Using a common garden design, lake trout were raised from the embryonic stage until 2 years of age, when they were acclimated to temperatures of 8, 11, 15 and 19 °C before undergoing experiments to test their metabolic performance. For all strains, growth rates showed a dome-shaped response with temperature, peaking at 11 °C and reaching negative rates at 19 °C. For 5 of 6 strains, metabolic rates increased while in all strains cardiovascular performance declined with increasing temperature. Higher metabolic rates at higher temperatures generally came at the cost of slower growth, less investment into gastrointestinal mass, and reduced cardiovascular fitness and investment. Importantly, though, the Seneca strain was unique by showing a reduction of aerobic scope at the highest temperature, possibly indicating increased costs as temperature rises in this smaller-sized, potentially slower pace-of-life strain. However, the overall low interpopulation variability in our study suggests limited diversity in the physiological responses to temperature in strains stocked across the Great Lakes basin.  相似文献   

10.
Fish are an excellent source of lean protein and omega-3 polyunsaturated fatty acids (PUFAs) but there is inadequate information on the levels of PUFAs in freshwater fish and specifically Great Lakes fish. Knowledge of PUFAs is necessary to make informed decisions regarding the balance between the benefits of fish consumption due to these factors versus risks of adverse health effects associated with elevated levels of contaminants known to be present in some Great Lakes fish and linked to increased risk of cancer and adverse neurological effects to both infants and adults. Our goal was to determine the lipid profiles in two species of Great Lakes fish, lake trout and whitefish. Total fat and the percentage of total and omega-3 PUFAs were with one exception significantly higher in lake trout than whitefish. Average concentrations of EPA + DHA were 11.2 and 9.7 g/100 g lipid in lake trout and whitefish, respectively. The concentrations of EPA + DHA in fatty marine fish (22.7, 23.9 and 30.2 g/100 g lipid, respectively) are about double those found in Great Lakes lake trout and whitefish. Nevertheless a 100 g serving of Great Lakes lake trout provides more than 500 mg of EPA + DHA, which is the daily intake level recommended by the American Dietetics Association for the prevention of coronary heart disease.  相似文献   

11.
Managers have long embraced the need to maintain diversity as a requisite condition for population and community sustainability. In the case of Great Lakes lake trout, diversity has been severely compromised. The identification of new gamete sources may be beneficial to lake trout reintroduction efforts, particularly in situations where native stocks have been completely extirpated such as in Lake Michigan. Lake trout from Elk Lake, Michigan, are genetically distinct from domestic hatchery strains and historical forms of lake trout from Lake Michigan. Importantly, Elk Lake fish were genetically distinct from Marquette strain lake trout which were previously stocked into Elk Lake. Elk Lake fish were most similar to Lake Michigan basin-derived Lewis Lake (LLW) and Green Lake (GLW) hatchery strains and to historical Lake Michigan populations from the Charlevoix, Michigan area. While all individuals exhibited characteristics of lean form lake trout, the body shape of lake trout from Elk Lake, stocked lean fish from Lake Michigan and Lake Superior wild lean strains from near Isle Royale differed. Elk Lake fish were more fusiform, elongate, and streamlined with a narrower caudal peduncle compared to hatchery lean strains and wild lean forms from the Isle Royale region of Lake Superior. The lake trout population in Elk Lake is a remnant of a now extirpated native Lake Michigan population that was established either by natural colonization or stocking from historical Lake Michigan populations. Elk Lake lake trout is as genetically diverse as other strains used in Great Lakes reintroduction efforts and likely represent a viable gamete source representing genetic diversity lost from Lake Michigan.  相似文献   

12.
We used analyses of burbot (Lota lota) and lake trout (Salvelinus namaycush) diets taken during spring gill-net surveys in northern Lake Michigan in 2006–2008 to investigate the potential for competition and predator–prey interactions between these two species. We also compared our results to historical data from 1932. During 2006–2008, lake trout diet consisted mainly of alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), whereas burbot utilized a much wider prey base including round goby (Neogobius melanostomus), rainbow smelt, alewives, and sculpins. Using the Schoener's diet overlap index, we found a higher potential for interspecific competition in 1932 than in 2006–2008, though diet overlap was not significant in either time period. No evidence of cannibalism by lake trout or lake trout predation on burbot was found in either time period. In 2006–2008, however, lake trout composed 5.4% (by weight) of burbot diet. To determine whether this predation could be having an impact on lake trout rehabilitation efforts in northern Lake Michigan, we developed a bioenergetic-based consumption estimate for burbot on Boulder Reef (a representative reef within the Northern Refuge) and found that burbot alone can consume a considerable proportion of the yearling lake trout stocked annually, depending on burbot density. Overall, we conclude that predation, rather than competition, is the more important ecological interaction between burbot and lake trout, and burbot predation may be contributing to the failed lake trout rehabilitation efforts in Lake Michigan.  相似文献   

13.
14.
Fatty acid profiles increasingly are being used to quantify foraging patterns of consumers, but the associated interpretation may vary with the tissue type and its lipid content. For salmonids, lipid deposits can be found in both dorsal and ventral (“belly flap”) areas of muscle tissues. However, it is uncertain whether belly flap and dorsal muscle fatty acid profiles are similar in natural populations of fish. We examined how fatty acid profiles of belly flap compared to those of dorsal muscle and the consequent impacts on dietary inferences. Fatty acid profiles were derived from lake trout (Salvelinus namaycush) caught in five North American lakes: Champlain, Flathead, Michigan, Ontario, and Swan. Fatty acid profiles were most similar between tissues when lipid content of muscle was > ~10%, the threshold below which similarities decreased and thus increasingly affected dietary inference. Some fatty acids commonly used as trophic indicators preferentially accrued in one tissue over the other depending on lipid content of the tissues. Regardless of tissue type, fatty acid profiles were specific to each lake indicating that food web structures were distinctive over a broad geographic range. Fatty acid profiles of tissues from lakes Michigan and Ontario were highly similar, so were those from Flathead and Swan lakes, whereas those from Lake Champlain were distinct, having comparatively high proportions of 18:1n-9. We conclude that lipid storage areas like belly flaps likely provide a more accurate signal than muscle when using fatty acids to investigate dietary patterns, particularly when muscle lipid levels are low.  相似文献   

15.
Understanding the hydrodynamics of Lake Champlain is a basic requirement for developing forecasting tools to address the lake‘s environmental issues. In 2003 through 2005, surface drifting buoys were used to help characterize the circulation of the main body and northeast region (Inland Sea) of the lake. Progressive vector diagrams of over-lake winds when compared to drifter trajectories suggest the presence of gyre-like circulation patterns. Drifter statistics suggest average current speeds of 10 cm s−1 and were predominantly northward (+ V) due to northerly-directed winds and lake geometry. Singleparticle eddy diffusivities on the order of 106 cm2 s−1 were calculated which is consistent with results from the Great Lakes and in some oceanic regions. However, the Lagrangian length and time scales, a measure of flow decorrelation scales, were in general smaller than seen in the Great Lakes, which is a natural consequence of the smaller basin size of Lake Champlain relative to the Great Lakes.  相似文献   

16.
Thiamine (vitamin B1) deficiency in Great Lakes salmonines has been linked to consumption of alewife Alosa pseudoharengus. Thiamine deficiency has been recognized as a possible impediment to lake trout Salvelinus namaycush recruitment in the Great Lakes and Atlantic salmon Salmo salar recruitment in the Finger Lakes and Baltic Sea. Alewife invaded Lake Champlain in 2003 which provided an opportunity to investigate changes in thiamine concentrations in salmonine predators during an alewife invasion. We monitored egg unphosphorylated and total thiamine concentrations in lake trout and Atlantic salmon in 2004 and 2007–2019, assessed whether concentrations were associated with mortality, and examined thiaminase activity in alewife. Total thiamine concentrations in lake trout and Atlantic salmon were significantly lower than in 2004 for seven of the ten collection years for lake trout and for nine of the 12 collection years for Atlantic salmon. Mortality and signs of thiamine deficiency were observed in laboratory-reared Atlantic salmon free embryos but not in lake trout. Average thiaminase activity in adult alewife declined from 5200 pmol/g/min in 2006 to 1500 pmol/g/min in 2012. Our results provide further evidence that a diet that includes alewife reduces egg thiamine concentrations in salmonines. This effect was observed within four years of the invasion of alewife.  相似文献   

17.
On Great Lakes dunes, the link between foredune dynamics and coastal processes is seen in dune responses to changing lake levels. This paper investigates foredune dynamics during a recent period of rising and high lake levels. The study location was an active foredune in P.J. Hoffmaster State Park on the east coast of Lake Michigan, where field data were collected from 2000 through the final destruction of the foredune by wave removal in November 2019. Foredune dynamics were studied with erosion pins, direct observations, photographs, mapping, and on-site wind measurements. Regional climate and lake-level data were obtained from established data collection programs. The response of the foredune to rising lake levels was compared to several models of foredune behavior. During the study, the Lake Michigan-Huron level rose 1.89 m from January 2013 to July 2020. After an early transitional period, foredune activity was characterized by scarp retreat (4–19 m per year) and dune narrowing from 2014 to 2019. When the foredune completely disappeared in November 2019, erosion/scarping began on the next landward dune. The foredune activity fits Olson’s (1958) model for foredune growth and erosion through lake-level cycles. The foredune migration predicted by the revised Davidson-Arnott (2021) model of foredune response to relative water level rise did not occur, most likely because the rate of lake-level rise was too high. The six years of foredune narrowing before wave erosion started affecting the next landward dune represent a time-lag in Lake Michigan dune history models of increased dune activity during high lake-level stands.  相似文献   

18.
Alewife (Alosa pseudoharengus) predation may be an important mortality source on lake trout fry (Salvelinus namaycush), and could affect the success of lake trout restoration in the Great Lakes. This study tested the prediction that fry showing typical swimming and avoidance behavior over artificial reefs will differ in survival when alewives are present versus when alewives are absent. Six tanks with cobble substrate were each stocked with 153 lake trout fry (density = 131 m− 2), a density comparable to that recorded at Stony Island reef, Lake Ontario during the early 1990s. Four treatment tanks each contained ten alewives (density = 8 m− 2) and two control tanks contained no alewives. After 12 days, mean recovery of fry was less in treatment tanks (31.5 fry per tank) than in control tanks (150 fry per tank; P < 0.009). Fry mortality in control tanks was about 2% in contrast to 46 to 91% mortality in tanks containing alewives. Alewife predation effects were evident early in the experiment as the mean daily capture of fry by traps set in each tank was always lower after day two in treatment tanks than in control tanks. The rate of consumption of lake trout fry by alewives ranged from 0.57 to 1.16 fry alewife− 1 day− 1 (mean = 0.99 ± 0.141; median = 1.12). The results of this study support the hypothesis that predation by alewives could cause a high level of lake trout fry mortality, and thus affect natural recruitment of lake trout and the success of population rehabilitation.  相似文献   

19.
Natal philopatry in lake sturgeon (Acipenser fulvescens) has been hypothesized to be an important factor that has lead to genetically distinct Great Lakes populations. Due to declining abundance, population extirpation, and restricted distribution, hatchery supplementation is being used to augment natural recruitment and to reestablish populations. If hatchery-reared lake sturgeon are more likely to stray than naturally produced individuals, as documented in other well-studied species, outbreeding could potentially jeopardize beneficial site-specific phenotypic and genotypic adaptations. From 1983 to 1994, lake sturgeon propagated using eggs taken from Lake Winnebago adults (Lake Michigan basin) were released in the St. Louis River estuary in western Lake Superior. Our objective was to determine whether these introduced individuals have strayed into annual spawning runs in the Sturgeon River, Michigan. Additionally, we estimated a natural migration rate between the Sturgeon River and Bad River, Wisconsin populations. Presumed primiparous lake sturgeon sampled during Sturgeon River spawning runs from 2003 to 2008 were genotyped at 12 microsatellite loci. Genotypic baselines established for the Sturgeon River (n = 101), Bad River (n = 40), and Lake Winnebago river system (n = 73) revealed a relatively high level of genetic divergence among populations (mean FST = 0.103; mean RST = 0.124). Likelihood-based assignment tests indicated no straying of stocked Lake Winnebago strain lake sturgeon from the St. Louis River into the Sturgeon River spawning population. One presumed primiparous Sturgeon River individual likely originated from the Bad River population. Four first-generation migrants were detected in the Sturgeon River baseline, indicating an estimated 3.5% natural migration rate for the system.  相似文献   

20.
Reaction distances under various light intensities (0-19 uE/m2/s), angles of attack, swimming speeds, and percentage of overall foraging success were measured. Extensive efforts have been invested in restoring lean lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes, but successful natural recruitment of lake trout continues to be rare outside of Lake Superior and parts of Lake Huron. There is evidence of high mortality during the first several months after eggs hatch in the spring, but little is known about the foraging mechanisms of this age-0 life stage. We developed a foraging model for age-0 lake trout (S. namaycush) in response to amphipods (Hyalella azteca) and mysids (Mysis diluviana) by simulating underwater environmental conditions in the Great Lakes using a temperature-controlled chamber and spectrally matched lighting. Reaction distances under various light intensities (0–19 uE/m2/s), angles of attack, swimming speeds, and percentage of overall foraging success were measured. Intake rates under different light intensities and prey densities were also measured. Age-0 lake trout were non-responsive in the dark, but were equally responsive under all light levels tested. Age-0 lake trout also demonstrated a longer reaction distance in response to moving prey, particularly mysids, which had an escape response that reduced overall foraging success. We determined that prey intake rate (numeric or biomass) could be modeled most accurately as a function of prey density using a Michaelis–Menton equation and that even under low mysid densities (3 individuals/m2), age-0 lake trout could quickly satisfy their energetic demands in a benthic setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号