共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents an inference approach for dependent data in time series, spatial, and panel data applications. The method involves constructing t and Wald statistics using a cluster covariance matrix estimator (CCE). We use an approximation that takes the number of clusters/groups as fixed and the number of observations per group to be large. The resulting limiting distributions of the t and Wald statistics are standard t and F distributions where the number of groups plays the role of sample size. Using a small number of groups is analogous to ‘fixed-b’ asymptotics of
[Kiefer and Vogelsang, 2002]
and
[Kiefer and Vogelsang, 2005]
(KV) for heteroskedasticity and autocorrelation consistent inference. We provide simulation evidence that demonstrates that the procedure substantially outperforms conventional inference procedures. 相似文献
2.
This paper proposes a robustification of the test statistic of Aït-Sahalia and Jacod (2009b) for the presence of market microstructure noise in high frequency data, based on the pre-averaging method of Jacod et al. (2010). We show that the robustified statistic restores the test’s discriminating power between jumps and no jumps despite the presence of market microstructure noise in the data. 相似文献
3.
In this paper, we analytically investigate three efficient estimators for cointegrating regression models: Phillips and Hansen’s [Phillips, P.C.B., Hansen, B.E., 1990. Statistical inference in instrumental variables regression with I(1) processes. Review of Economic Studies 57, 99–125] fully modified OLS estimator, Park’s [Park, J.Y., 1992. Canonical cointegrating regressions. Econometrica 60, 119–143] canonical cointegrating regression estimator, and Saikkonen’s [Saikkonen, P., 1991. Asymptotically efficient estimation of cointegration regressions. Econometric Theory 7, 1–21] dynamic OLS estimator. We consider the case where the regression errors are moderately serially correlated and the AR coefficient in the regression errors approaches 1 at a rate slower than 1/T, where T represents the sample size. We derive the limiting distributions of the efficient estimators under this system and find that they depend on the approaching rate of the AR coefficient. If the rate is slow enough, efficiency is established for the three estimators; however, if the approaching rate is relatively faster, the estimators will have the same limiting distribution as the OLS estimator. For the intermediate case, the second-order bias of the OLS estimator is partially eliminated by the efficient methods. This result explains why, in finite samples, the effect of the efficient methods diminishes as the serial correlation in the regression errors becomes stronger. We also propose to modify the existing efficient estimators in order to eliminate the second-order bias, which possibly remains in the efficient estimators. Using Monte Carlo simulations, we demonstrate that our modification is effective when the regression errors are moderately serially correlated and the simultaneous correlation is relatively strong. 相似文献
4.
Most rational expectations models involve equations in which the dependent variable is a function of its lags and its expected future value. We investigate the asymptotic bias of generalized method of moment (GMM) and maximum likelihood (ML) estimators in such models under misspecification. We consider several misspecifications, and focus more specifically on the case of omitted dynamics in the dependent variable. In a stylized DGP, we derive analytically the asymptotic biases of these estimators. We establish that in many cases of interest the two estimators of the degree of forward-lookingness are asymptotically biased in opposite direction with respect to the true value of the parameter. We also propose a quasi-Hausman test of misspecification based on the difference between the GMM and ML estimators. Using Monte-Carlo simulations, we show that the ordering and direction of the estimators still hold in a more realistic New Keynesian macroeconomic model. In this set-up, misspecification is in general found to be more harmful to GMM than to ML estimators. 相似文献
5.
For financial assets whose best quotes almost always change by jumping by the market’s price tick size (one cent, five cents, etc.), this paper proposes an estimator of Quadratic Variation which controls for microstructure effects. It measures the prevalence of alternations, where quotes jump back to their just-previous price. It defines a simple property called “uncorrelated alternation”, which under conditions implies that the estimator is consistent in an asymptotic limit theory, where jumps become very frequent and small. Feasible limit theory is developed, and in simulations works well. 相似文献
6.
This paper develops tests for comparing the accuracy of predictive densities derived from (possibly misspecified) diffusion models. In particular, we first outline a simple simulation-based framework for constructing predictive densities for one-factor and stochastic volatility models. We then construct tests that are in the spirit of Diebold and Mariano (1995) and White (2000). In order to establish the asymptotic properties of our tests, we also develop a recursive variant of the nonparametric simulated maximum likelihood estimator of Fermanian and Salanié (2004). In an empirical illustration, the predictive densities from several models of the one-month federal funds rates are compared. 相似文献
7.
This paper proposes a class of locally stationary diffusion processes. The model has a time varying but locally linear drift and a volatility coefficient that is allowed to vary over time and space. The model is semiparametric because we allow these functions to be unknown and the innovation process is parametrically specified, indeed completely known. We propose estimators of all the unknown quantities based on long span data. Our estimation method makes use of the property of local stationarity. We establish asymptotic theory for the proposed estimators as the time span increases, so we do not rely on infill asymptotics. We apply this method to interest rate data to illustrate the validity of our model. Finally, we present a simulation study to provide the finite-sample performance of the proposed estimators. 相似文献
8.
We develop a sequential procedure to test the adequacy of jump-diffusion models for return distributions. We rely on intraday data and nonparametric volatility measures, along with a new jump detection technique and appropriate conditional moment tests, for assessing the import of jumps and leverage effects. A novel robust-to-jumps approach is utilized to alleviate microstructure frictions for realized volatility estimation. Size and power of the procedure are explored through Monte Carlo methods. Our empirical findings support the jump-diffusive representation for S&P500 futures returns but reveal it is critical to account for leverage effects and jumps to maintain the underlying semi-martingale assumption. 相似文献
9.
Focusing on the model of demand-driven innovation and spatial competition over time in Jovanovic and Rob (1987), we study the effects of the robustness of estimators employed by firms to make inferences about their markets on the firms’ growth patterns. We show that if consumers’ signals in the model are moderately heavy-tailed and the firms use the sample mean of the signals to estimate the ideal product, then the firms’ output levels exhibit positive persistence. In such a setting, large firms have an advantage over their smaller counterparts. These properties are reversed for signals with extremely heavy-tailed distributions. In such a case, the model implies anti-persistence in output levels, together with a surprising pattern of oscillations in firm sizes, with smaller firms being likely to become larger ones next period, and vice versa. We further show that the implications of the model under moderate heavy-tailedness continue to hold under the only assumption of symmetry of consumers’ signals if the firms use a more robust estimator of the ideal product, the sample median. 相似文献
10.
Dennis Kristensen 《Journal of econometrics》2011,164(2):382-403
Novel transition-based misspecification tests of semiparametric and fully parametric univariate diffusion models based on the estimators developed in [Kristensen, D., 2010. Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models. Journal of Econometrics 156, 239-259] are proposed. It is demonstrated that transition-based tests in general lack power in detecting certain departures from the null since they integrate out local features of the drift and volatility. As a solution to this, tests that directly compare drift and volatility estimators under the relevant null and alternative are also developed which exhibit better power against local alternatives. 相似文献
11.
We examine the use of the likelihood ratio (LR) statistic to test for unobserved heterogeneity in duration models, based on mixtures of exponential or Weibull distributions. We consider both the uncensored and censored duration cases. The asymptotic null distribution of the LR test statistic is not the standard chi-square, as the standard regularity conditions do not hold. Instead, there is a nuisance parameter identified only under the alternative, and a null parameter value on the boundary of the parameter space, as in Cho and White (2007a). We accommodate these and provide methods delivering consistent asymptotic critical values. We conduct a number of Monte Carlo simulations, comparing the level and power of the LR test statistic to an information matrix (IM) test due to Chesher (1984) and Lagrange multiplier (LM) tests of Kiefer (1985) and Sharma (1987). Our simulations show that the LR test statistic generally outperforms the IM and LM tests. We also revisit the work of van den Berg and Ridder (1998) on unemployment durations and of Ghysels et al. (2004) on interarrival times between stock trades, and, as it turns out, affirm their original informal inferences. 相似文献
12.
This paper deals with the estimation of the long-run variance of a stationary sequence. We extend the usual Bartlett-kernel heteroskedasticity and autocorrelation consistent (HAC) estimator to deal with long memory and antipersistence. We then derive asymptotic expansions for this estimator and the memory and autocorrelation consistent (MAC) estimator introduced by Robinson [Robinson, P. M., 2005. Robust covariance matrix estimation: HAC estimates with long memory/antipersistence correction. Econometric Theory 21, 171–180]. We offer a theoretical explanation for the sensitivity of HAC to the bandwidth choice, a feature which has been observed in the special case of short memory. Using these analytical results, we determine the MSE-optimal bandwidth rates for each estimator. We analyze by simulations the finite-sample performance of HAC and MAC estimators, and the coverage probabilities for the studentized sample mean, giving practical recommendations for the choice of bandwidths. 相似文献
13.
Andrew J. Patton 《Journal of econometrics》2011,161(2):284-303
This paper presents new methods for comparing the accuracy of estimators of the quadratic variation of a price process. I provide conditions under which the relative accuracy of competing estimators can be consistently estimated (as T→∞), and show that forecast evaluation tests may be adapted to the problem of ranking these estimators. The proposed methods avoid making specific assumptions about microstructure noise, and facilitate comparisons of estimators that would be difficult using methods from the extant literature, such as those based on different sampling schemes. An application to high frequency IBM data between 1996 and 2007 illustrates the new methods. 相似文献
14.
We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators. 相似文献
15.
We study estimation and inference in cointegrated regression models with multiple structural changes allowing both stationary and integrated regressors. Both pure and partial structural change models are analyzed. We derive the consistency, rate of convergence and the limit distribution of the estimated break fractions. Our technical conditions are considerably less restrictive than those in Bai et al. [Bai, J., Lumsdaine, R.L., Stock, J.H., 1998. Testing for and dating breaks in multivariate time series. Review of Economic Studies 65, 395–432] who considered the single break case in a multi-equations system, and permit a wide class of practically relevant models. Our analysis is, however, restricted to a single equation framework. We show that if the coefficients of the integrated regressors are allowed to change, the estimated break fractions are asymptotically dependent so that confidence intervals need to be constructed jointly. If, however, only the intercept and/or the coefficients of the stationary regressors are allowed to change, the estimates of the break dates are asymptotically independent as in the stationary case analyzed by Bai and Perron [Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66, 47–78]. We also show that our results remain valid, under very weak conditions, when the potential endogeneity of the non-stationary regressors is accounted for via an increasing sequence of leads and lags of their first-differences as additional regressors. Simulation evidence is presented to assess the adequacy of the asymptotic approximations in finite samples. 相似文献
16.
Reduced rank regression (RRR) models with time varying heterogeneity are considered. Standard information criteria for selecting cointegrating rank are shown to be weakly consistent in semiparametric RRR models in which the errors have general nonparametric short memory components and shifting volatility provided the penalty coefficient Cn→∞ and Cn/n→0 as n→∞. The AIC criterion is inconsistent and its limit distribution is given. The results extend those in Cheng and Phillips (2009a) and are useful in empirical work where structural breaks or time evolution in the error variances is present. An empirical application to exchange rate data is provided. 相似文献
17.
We study estimation of the date of change in persistence, from I(0) to I(1) or vice versa. Contrary to statements in the original papers, our analytical results establish that the ratio-based break point estimators of Kim [Kim, J.Y., 2000. Detection of change in persistence of a linear time series. Journal of Econometrics 95, 97–116], Kim et al. [Kim, J.Y., Belaire-Franch, J., Badillo Amador, R., 2002. Corringendum to “Detection of change in persistence of a linear time series”. Journal of Econometrics 109, 389–392] and Busetti and Taylor [Busetti, F., Taylor, A.M.R., 2004. Tests of stationarity against a change in persistence. Journal of Econometrics 123, 33–66] are inconsistent when a mean (or other deterministic component) is estimated for the process. In such cases, the estimators converge to random variables with upper bound given by the true break date when persistence changes from I(0) to I(1). A Monte Carlo study confirms the large sample downward bias and also finds substantial biases in moderate sized samples, partly due to properties at the end points of the search interval. 相似文献
18.
Stable autoregressive models are considered with martingale differences errors scaled by an unknown nonparametric time-varying function generating heterogeneity. An important special case involves structural change in the error variance, but in most practical cases the pattern of variance change over time is unknown and may involve shifts at unknown discrete points in time, continuous evolution or combinations of the two. This paper develops kernel-based estimators of the residual variances and associated adaptive least squares (ALS) estimators of the autoregressive coefficients. Simulations show that efficiency gains are achieved by the adaptive procedure. 相似文献
19.
GMM estimators have poor finite sample properties in highly overidentified models. With many moment conditions the optimal weighting matrix is poorly estimated. We suggest using principal components of the weighting matrix. This effectively drops some of the moment conditions. Our simulations, done in the context of the dynamic panel data model, show that the resulting GMM estimator has better finite sample properties than the usual two-step GMM estimator, in the sense of smaller bias and more reliable standard errors. 相似文献
20.
We provide a set of probabilistic laws for estimating the quadratic variation of continuous semimartingales with the realized range-based variance—a statistic that replaces every squared return of the realized variance with a normalized squared range. If the entire sample path of the process is available, and under a set of weak conditions, our statistic is consistent and has a mixed Gaussian limit, whose precision is five times greater than that of the realized variance. In practice, of course, inference is drawn from discrete data and true ranges are unobserved, leading to downward bias. We solve this problem to get a consistent, mixed normal estimator, irrespective of non-trading effects. This estimator has varying degrees of efficiency over realized variance, depending on how many observations that are used to construct the high–low. The methodology is applied to TAQ data and compared with realized variance. Our findings suggest that the empirical path of quadratic variation is also estimated better with the realized range-based variance. 相似文献