首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a general local‐stochastic volatility model and an investor with exponential utility. For a European‐style contingent claim, whose payoff may depend on either a traded or nontraded asset, we derive an explicit approximation for both the buyer's and seller's indifference prices. For European calls on a traded asset, we translate indifference prices into an explicit approximation of the buyer's and seller's implied volatility surfaces. For European claims on a nontraded asset, we establish rigorous error bounds for the indifference price approximation. Finally, we implement our indifference price and implied volatility approximations in two examples.  相似文献   

2.
The growth of the exchange‐traded fund (ETF) industry has given rise to the trading of options written on ETFs and their leveraged counterparts (LETFs). We study the relationship between the ETF and LETF implied volatility surfaces when the underlying ETF is modeled by a general class of local‐stochastic volatility models. A closed‐form approximation for prices is derived for European‐style options whose payoffs depend on the terminal value of the ETF and/or LETF. Rigorous error bounds for this pricing approximation are established. A closed‐form approximation for implied volatilities is also derived. We also discuss a scaling procedure for comparing implied volatilities across leverage ratios. The implied volatility expansions and scalings are tested in three settings: Heston, limited constant elasticity of variance (CEV), and limited SABR; the last two are regularized versions of the well‐known CEV and SABR models.  相似文献   

3.
We derive general analytic approximations for pricing European basket and rainbow options on N assets. The key idea is to express the option’s price as a sum of prices of various compound exchange options, each with different pairs of subordinate multi‐ or single‐asset options. The underlying asset prices are assumed to follow lognormal processes, although our results can be extended to certain other price processes for the underlying. For some multi‐asset options a strong condition holds, whereby each compound exchange option is equivalent to a standard single‐asset option under a modified measure, and in such cases an almost exact analytic price exists. More generally, approximate analytic prices for multi‐asset options are derived using a weak lognormality condition, where the approximation stems from making constant volatility assumptions on the price processes that drive the prices of the subordinate basket options. The analytic formulae for multi‐asset option prices, and their Greeks, are defined in a recursive framework. For instance, the option delta is defined in terms of the delta relative to subordinate multi‐asset options, and the deltas of these subordinate options with respect to the underlying assets. Simulations test the accuracy of our approximations, given some assumed values for the asset volatilities and correlations. Finally, a calibration algorithm is proposed and illustrated.  相似文献   

4.
Despite the fact that currency‐protected swaps and swaptions are widely traded in the marketplace, pricing models for zero‐spread swaps, and swaptions have rarely been examined in the extant literature. This study presents a multicurrency LIBOR market model and uses it to derive pricing formulas for currency‐protected swaps and swaptions with nonzero spreads. The resulting pricing formulas are shown to be feasible and tractable for practical implementation and their hedging strategies are also provided. Our pricing formulas provide prices close to those computed from Monte Carlo simulation, but involve far less computation time, and thereby offering almost instant price quotes to clients and daily marking‐to‐market trading books, and facilitating efficient risk management of trading positions.  相似文献   

5.
A closed‐form pricing solution is proposed for the quality option embedded in Treasury bond futures contracts, under a multifactor and D. Heath, R. Jarrow, and A. Morton (1992) Gaussian framework. Such an analytical solution can be obtained through a conditioning approximation, in the sense of M. Curran (1994) and L. Rogers and Z. Shi (1995), or via a rank 1 approximation, following A. Brace and M. Musiela (1994). Monte Carlo simulations show that both approximations are extremely accurate and easy to calculate. Application of the proposed pricing model to the EUREX market from January 2000 through May 2004, yields an excellent fit and an insignificant estimate of the quality option magnitude. On average, this delivery option accounts for only of the futures prices. © 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27:275–303, 2007  相似文献   

6.
We propose a fast and accurate numerical method for pricing European swaptions in multifactor Gaussian term structure models. Our method can be used to accelerate the calibration of such models to the volatility surface. The pricing of an interest rate option in such a model involves evaluating a multidimensional integral of the payoff of the claim on a domain where the payoff is positive. In our method, we approximate the exercise boundary of the state space by a hyperplane tangent to the maximum probability point on the boundary and simplify the multidimensional integration into an analytical form. The maximum probability point can be determined using the gradient descent method. We demonstrate that our method is superior to previous methods by comparing the results to the price obtained by numerical integration.  相似文献   

7.
Over the last decade, dividends have become a standalone asset class instead of a mere side product of an equity investment. We introduce a framework based on polynomial jump‐diffusions to jointly price the term structures of dividends and interest rates. Prices for dividend futures, bonds, and the dividend paying stock are given in closed form. We present an efficient moment based approximation method for option pricing. In a calibration exercise we show that a parsimonious model specification has a good fit with Euribor interest rate swaps and swaptions, Euro Stoxx 50 Index dividend futures and dividend options, and Euro Stoxx 50 Index options.  相似文献   

8.
PRICING COUPON-BOND OPTIONS AND SWAPTIONS IN AFFINE TERM STRUCTURE MODELS   总被引:1,自引:0,他引:1  
This paper provides a numerically accurate and computationally fast approximation to the prices of European options on coupon-bearing instruments that is applicable to the entire family of affine term structure models. Exploiting the typical shapes of the conditional distributions of the risk factors in affine diffusions, we show that one can reliably compute the relevant probabilities needed for pricing options on coupon-bearing instruments by the same Fourier inversion methods used in the pricing of options on zero-coupon bonds. We apply our theoretical results to the pricing of options on coupon bonds and swaptions, and the calculation of "expected exposures" on swap books. As an empirical illustration, we compute the expected exposures implied by several affine term structure models fit to historical swap yields.  相似文献   

9.
We analyze the convergence of the Longstaff–Schwartz algorithm relying on only a single set of independent Monte Carlo sample paths that is repeatedly reused for all exercise time‐steps. We prove new estimates on the stochastic component of the error of this algorithm whenever the approximation architecture is any uniformly bounded set of L2 functions of finite Vapnik–Chervonenkis dimension (VC‐dimension), but in particular need not necessarily be either convex or closed. We also establish new overall error estimates, incorporating bounds on the approximation error as well, for certain nonlinear, nonconvex sets of neural networks.  相似文献   

10.
The authors suggest a modified quadratic approximation scheme, and apply this scheme to American barrier (knock‐out) and floating‐strike lookback options. This modified scheme introduces an additional parameter into the quadratic approximation method, originally suggested by G. Barone‐Adesi and R. Whaley (1987), to reduce pricing errors. When the barrier is close to the underlying asset's current price, the approximation formula is more accurate than lattice methods because the optimal exercise boundary is independent of the underlying asset's current price. That is, the proposed method overcomes the “near‐barrier” problem that occurs in lattice methods. In addition, the pricing error decreases when the underlying asset's volatility is high. This approximation scheme is more efficient than B. Gao, J. Huang, and M. Subrahmanyam's (2000) method. As a second application of the modified approximation scheme, the authors provide an approximation formula for American floating‐strike lookback options which is the first approximation formula ever suggested in the literature. Compared to S. Babbs' (2000) binomial approach, our approximation method is more efficient after controlling for pricing errors, and is more accurate after controlling for computing time. © 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27:29–59, 2007  相似文献   

11.
We develop a quasi‐analytical pricing method for discretely sampled arithmetic Asian options. We derive an asymptotic approximation of the arithmetic average with the geometric average of lognormal variables. Numerical experiments show that the asymptotic approximation is accurate and the absolute error converges very quickly as the number of observations increases. The absolute error is of the order of 10?5 to 10?6 for daily average. We then derive quasi‐analytical formulas for arithmetic Asian options under the Black–Scholes framework, in which the probability density of the geometric average is used. Extensive experiments are conducted to compare the proposed method with the various existing semianalytical methods. The overall accuracy of the proposed method is better than any other methods tested. The proposed method performs much better than the second best one for at‐the‐money Asian options under high volatility. The mean pricing error of the proposed method for a daily average Asian option is 37.5% less than the second best one. © 2012 Wiley Periodicals, Inc. Jrl Fut Mark 33:1143–1166, 2013  相似文献   

12.
We approximate normal implied volatilities by means of an asymptotic expansion method. The contribution of this paper is twofold: to our knowledge, this paper is the first to provide a unified approximation method for the normal implied volatility under general local stochastic volatility models. Second, we applied our framework to polynomial local stochastic volatility models with various degrees and could replicate the swaptions market data accurately. In addition we examined the accuracy of the results by comparison with the Monte‐Carlo simulations.  相似文献   

13.
We study the Merton portfolio optimization problem in the presence of stochastic volatility using asymptotic approximations when the volatility process is characterized by its timescales of fluctuation. This approach is tractable because it treats the incomplete markets problem as a perturbation around the complete market constant volatility problem for the value function, which is well understood. When volatility is fast mean‐reverting, this is a singular perturbation problem for a nonlinear Hamilton–Jacobi–Bellman partial differential equation, while when volatility is slowly varying, it is a regular perturbation. These analyses can be combined for multifactor multiscale stochastic volatility models. The asymptotics shares remarkable similarities with the linear option pricing problem, which follows from some new properties of the Merton risk tolerance function. We give examples in the family of mixture of power utilities and also use our asymptotic analysis to suggest a “practical” strategy that does not require tracking the fast‐moving volatility. In this paper, we present formal derivations of asymptotic approximations, and we provide a convergence proof in the case of power utility and single‐factor stochastic volatility. We assess our approximation in a particular case where there is an explicit solution.  相似文献   

14.
In this paper, we argue that, once the costs of maintaining the hedging portfolio are properly taken into account, semistatic portfolios should more properly be thought of as separate classes of derivatives, with nontrivial, model‐dependent payoff structures. We derive new integral representations for payoffs of exotic European options in terms of payoffs of vanillas, different from the Carr–Madan representation, and suggest approximations of the idealized static hedging/replicating portfolio using vanillas available in the market. We study the dependence of the hedging error on a model used for pricing and show that the variance of the hedging errors of static hedging portfolios can be sizably larger than the errors of variance‐minimizing portfolios. We explain why the exact semistatic hedging of barrier options is impossible for processes with jumps, and derive general formulas for variance‐minimizing semistatic portfolios. We show that hedging using vanillas only leads to larger errors than hedging using vanillas and first touch digitals. In all cases, efficient calculations of the weights of the hedging portfolios are in the dual space using new efficient numerical methods for calculation of the Wiener–Hopf factors and Laplace–Fourier inversion.  相似文献   

15.
Mijatovi? and Pistorius proposed an efficient Markov chain approximation method for pricing European and barrier options in general one‐dimensional Markovian models. However, sharp convergence rates of this method for realistic financial payoffs, which are nonsmooth, are rarely available. In this paper, we solve this problem for general one‐dimensional diffusion models, which play a fundamental role in financial applications. For such models, the Markov chain approximation method is equivalent to the method of lines using the central difference. Our analysis is based on the spectral representation of the exact solution and the approximate solution. By establishing the convergence rate for the eigenvalues and the eigenfunctions, we obtain sharp convergence rates for the transition density and the price of options with nonsmooth payoffs. In particular, we show that for call‐/put‐type payoffs, convergence is second order, while for digital‐type payoffs, convergence is generally only first order. Furthermore, we provide theoretical justification for two well‐known smoothing techniques that can restore second‐order convergence for digital‐type payoffs and explain oscillations observed in the convergence for options with nonsmooth payoffs. As an extension, we also establish sharp convergence rates for European options for a rich class of Markovian jump models constructed from diffusions via subordination. The theoretical estimates are confirmed using numerical examples.  相似文献   

16.
Using a suitable change of probability measure, we obtain a Poisson series representation for the arbitrage‐free price process of vulnerable contingent claims in a regime‐switching market driven by an underlying continuous‐time Markov process. As a result of this representation, along with a short‐time asymptotic expansion of the claim's price process, we develop an efficient novel method for pricing claims whose payoffs may depend on the full path of the underlying Markov chain. The proposed approach is applied to price not only simple European claims such as defaultable bonds, but also a new type of path‐dependent claims that we term self‐decomposable, as well as the important class of vulnerable call and put options on a stock. We provide a detailed error analysis and illustrate the accuracy and computational complexity of our method on several market traded instruments, such as defaultable bond prices, barrier options, and vulnerable call options. Using again our Poisson series representation, we show differentiability in time of the predefault price function of European vulnerable claims, which enables us to rigorously deduce Feynman‐Ka? representations for the predefault pricing function and new semimartingale representations for the price process of the vulnerable claim under both risk‐neutral and objective probability measures.  相似文献   

17.
In this study, a new approach to pricing American options is proposed and termed the canonical implied binomial (CIB) tree method. CIB takes advantage of both canonical valuation (Stutzer, 1996) and the implied binomial tree method (Rubinstein, 1994). Using simulated returns from geometric Brownian motions (GBM), CIB produced very similar prices for calls and European puts as those of Black–Scholes (BS). Applied to a set of over 15,000 American‐style S&P 100 Index puts, CIB outperformed BS with historic volatility in pricing out‐of‐the‐money options; in addition, it outperformed the canonical least‐squares Monte Carlo (Liu, 2010) in the dynamic hedging of in‐the‐money options. Furthermore, CIB suggests that regular GBM‐based Monte Carlo can be extended to American options pricing by also utilizing the implied binomial tree. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark  相似文献   

18.
We generalize the primal–dual methodology, which is popular in the pricing of early‐exercise options, to a backward dynamic programming equation associated with time discretization schemes of (reflected) backward stochastic differential equations (BSDEs). Taking as an input some approximate solution of the backward dynamic program, which was precomputed, e.g., by least‐squares Monte Carlo, this methodology enables us to construct a confidence interval for the unknown true solution of the time‐discretized (reflected) BSDE at time 0. We numerically demonstrate the practical applicability of our method in two 5‐dimensional nonlinear pricing problems where tight price bounds were previously unavailable.  相似文献   

19.
We develop a theory of robust pricing and hedging of a weighted variance swap given market prices for a finite number of co‐maturing put options. We assume the put option prices do not admit arbitrage and deduce no‐arbitrage bounds on the weighted variance swap along with super‐ and sub‐replicating strategies that enforce them. We find that market quotes for variance swaps are surprisingly close to the model‐free lower bounds we determine. We solve the problem by transforming it into an analogous question for a European option with a convex payoff. The lower bound becomes a problem in semi‐infinite linear programming which we solve in detail. The upper bound is explicit. We work in a model‐independent and probability‐free setup. In particular, we use and extend Föllmer's pathwise stochastic calculus. Appropriate notions of arbitrage and admissibility are introduced. This allows us to establish the usual hedging relation between the variance swap and the “log contract” and similar connections for weighted variance swaps. Our results take the form of a FTAP: we show that the absence of (weak) arbitrage is equivalent to the existence of a classical model which reproduces the observed prices via risk‐neutral expectations of discounted payoffs.  相似文献   

20.
Computable expressions are derived for the Expected Shortfall of portfolios whose value is a quadratic function of a number of risk factors, as arise from a Delta–Gamma–Theta approximation. The risk factors are assumed to follow an elliptical multivariate t distribution, reflecting the heavy‐tailed nature of asset returns. Both an exact expression and a uniform asymptotic expansion are presented. The former involves only a single rapidly convergent integral. The latter is essentially explicit, and numerical experiments suggest that its error is negligible compared to that incurred by the Delta–Gamma–Theta approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号