共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper analyzes the drivers of financial distress that were experienced by small Italian cooperative banks during the latest deep recession, focusing mainly on the importance of bank capital as a predictor of bankruptcy for Italian nonprofit banks. The analysis aims to build an early-warning model that is suitable for this type of bank.The results reveal non-monotonic effects of bank capital on the probability of failure. In contrast to distress models for for-profit banks, non-performing loans, profitability, liquidity, and management quality have a negligible predictive value. The findings also show that unreserved impaired loans have an important impact on the probability of bank distress. Moreover, the loan–loss ratio provision on substandard loans constitutes a suitable antibody against bank distress. Overall, the results are robust in terms of both the methodology (i.e., frequentist and Bayesian approaches) and the sample used (i.e., cooperative banks in Italy and euro-area countries). 相似文献
2.
Trends and cycles in economic time series: A Bayesian approach 总被引:1,自引:0,他引:1
Trends and cyclical components in economic time series are modeled in a Bayesian framework. This enables prior notions about the duration of cycles to be used, while the generalized class of stochastic cycles employed allows the possibility of relatively smooth cycles being extracted. The posterior distributions of such underlying cycles can be very informative for policy makers, particularly with regard to the size and direction of the output gap and potential turning points. From the technical point of view a contribution is made in investigating the most appropriate prior distributions for the parameters in the cyclical components and in developing Markov chain Monte Carlo methods for both univariate and multivariate models. Applications to US macroeconomic series are presented. 相似文献
3.
In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of model uncertainty are typically rather sensitive to the specification of the prior. In particular, ‘diffuse’ priors on model-specific parameters can lead to quite unexpected consequences. Here we focus on the practically relevant situation where we need to entertain a (large) number of sampling models and we have (or wish to use) little or no subjective prior information. We aim at providing an ‘automatic’ or ‘benchmark’ prior structure that can be used in such cases. We focus on the normal linear regression model with uncertainty in the choice of regressors. We propose a partly non-informative prior structure related to a natural conjugate g-prior specification, where the amount of subjective information requested from the user is limited to the choice of a single scalar hyperparameter g0j. The consequences of different choices for g0j are examined. We investigate theoretical properties, such as consistency of the implied Bayesian procedure. Links with classical information criteria are provided. More importantly, we examine the finite sample implications of several choices of g0j in a simulation study. The use of the MC3 algorithm of Madigan and York (Int. Stat. Rev. 63 (1995) 215), combined with efficient coding in Fortran, makes it feasible to conduct large simulations. In addition to posterior criteria, we shall also compare the predictive performance of different priors. A classic example concerning the economics of crime will also be provided and contrasted with results in the literature. The main findings of the paper will lead us to propose a ‘benchmark’ prior specification in a linear regression context with model uncertainty. 相似文献
4.
We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure as autoregressive models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging is used to account for model uncertainty, including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulations and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performance compared to the selected mean-based alternatives under various loss functions that encompass both point and probabilistic forecasts. The proposed methods are generic and can be used to complement a rich class of methods that build on autoregressive models. 相似文献
5.
Computationally efficient methods for Bayesian analysis of seemingly unrelated regression (SUR) models are described and applied that involve the use of a direct Monte Carlo (DMC) approach to calculate Bayesian estimation and prediction results using diffuse or informative priors. This DMC approach is employed to compute Bayesian marginal posterior densities, moments, intervals and other quantities, using data simulated from known models and also using data from an empirical example involving firms’ sales. The results obtained by the DMC approach are compared to those yielded by the use of a Markov Chain Monte Carlo (MCMC) approach. It is concluded from these comparisons that the DMC approach is worthwhile and applicable to many SUR and other problems. 相似文献
6.
Analysis, model selection and forecasting in univariate time series models can be routinely carried out for models in which the model order is relatively small. Under an ARMA assumption, classical estimation, model selection and forecasting can be routinely implemented with the Box–Jenkins time domain representation. However, this approach becomes at best prohibitive and at worst impossible when the model order is high. In particular, the standard assumption of stationarity imposes constraints on the parameter space that are increasingly complex. One solution within the pure AR domain is the latent root factorization in which the characteristic polynomial of the AR model is factorized in the complex domain, and where inference questions of interest and their solution are expressed in terms of the implied (reciprocal) complex roots; by allowing for unit roots, this factorization can identify any sustained periodic components. In this paper, as an alternative to identifying periodic behaviour, we concentrate on frequency domain inference and parameterize the spectrum in terms of the reciprocal roots, and, in addition, incorporate Gegenbauer components. We discuss a Bayesian solution to the various inference problems associated with model selection involving a Markov chain Monte Carlo (MCMC) analysis. One key development presented is a new approach to forecasting that utilizes a Metropolis step to obtain predictions in the time domain even though inference is being carried out in the frequency domain. This approach provides a more complete Bayesian solution to forecasting for ARMA models than the traditional approach that truncates the infinite AR representation, and extends naturally to Gegenbauer ARMA and fractionally differenced models. 相似文献
7.
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, nonparametric Bayesian methods are used to flexibly model the skewness and kurtosis of the distribution while the dynamics of volatility continue to be modeled with a parametric structure. Our semiparametric Bayesian approach provides a full characterization of parametric and distributional uncertainty. A Markov chain Monte Carlo sampling approach to estimation is presented with theoretical and computational issues for simulation from the posterior predictive distributions. An empirical example compares the new model to standard parametric stochastic volatility models. 相似文献
8.
Monitoring business cycles faces two potentially conflicting objectives: accuracy and timeliness. To strike a balance between these dual objectives, we propose a Bayesian sequential quickest detection method to identify turning points in real time with a sequential stopping time as a solution. Using four monthly indexes of real economic activity in the United States, we evaluated the method’s real-time ability to date the past five recessions. The proposed method identified similar turning-point dates as the National Bureau of Economic Research (NBER), with no false alarms, but on average, it dated peaks four months faster and troughs 10 months faster relative to the NBER announcement. The timeliness of our method is also notable compared to the dynamic factor Markov-switching model: the average lead time was about five months when dating peaks and two months when dating troughs. 相似文献
9.
Bayesian MCMC Mapping of Quantitative Trait Loci in a Half-sib Design: a Graphical Model Perspective
N.A. Sheehan B. Gulbrandtsen M.S. Lund D.A. Sorensen 《Revue internationale de statistique》2002,70(2):241-267
Graphical models provide a powerful and flexible approach to the analysis of complex problems in genetics. While task-specific software may be extremely efficient for any particular analysis, it is often difficult to adapt to new computational challenges. By viewing these genetic applications in a more general framework, many problems can be handled by essentially the same software. This is advantageous in an area where fast methodological development is essential. Once a method has been fully developed and tested, problem-specific software may then be required. The aim of this paper is to illustrate the potential use of a graphical model approach to genetic analyses by taking a very simple and well-understood problem by way of example. 相似文献
10.
Markov chain Monte Carlo (MCMC) methods have become a ubiquitous tool in Bayesian analysis. This paper implements MCMC methods
for Bayesian analysis of stochastic frontier models using the WinBUGS package, a freely available software. General code for
cross-sectional and panel data are presented and various ways of summarizing posterior inference are discussed. Several examples
illustrate that analyses with models of genuine practical interest can be performed straightforwardly and model changes are
easily implemented. Although WinBUGS may not be that efficient for more complicated models, it does make Bayesian inference
with stochastic frontier models easily accessible for applied researchers and its generic structure allows for a lot of flexibility
in model specification.
相似文献
11.
Non- and semi-parametric estimation of interaction in inhomogeneous point patterns 总被引:12,自引:1,他引:12
We develop methods for analysing the 'interaction' or dependence between points in a spatial point pattern, when the pattern is spatially inhomogeneous. Completely non-parametric study of interactions is possible using an analogue of the K -function. Alternatively one may assume a semi-parametric model in which a (parametrically specified) homogeneous Markov point process is subjected to (non-parametric) inhomogeneous independent thinning. The effectiveness of these approaches is tested on datasets representing the positions of trees in forests. 相似文献
12.
Model specification for state space models is a difficult task as one has to decide which components to include in the model and to specify whether these components are fixed or time-varying. To this aim a new model space MCMC method is developed in this paper. It is based on extending the Bayesian variable selection approach which is usually applied to variable selection in regression models to state space models. For non-Gaussian state space models stochastic model search MCMC makes use of auxiliary mixture sampling. We focus on structural time series models including seasonal components, trend or intervention. The method is applied to various well-known time series. 相似文献
13.
Bayesian modification indices are presented that provide information for the process of model evaluation and model modification. These indices can be used to investigate the improvement in a model if fixed parameters are re-specified as free parameters. The indices can be seen as a Bayesian analogue to the modification indices commonly used in a frequentist framework. The aim is to provide diagnostic information for multi-parameter models where the number of possible model violations and the related number of alternative models is too large to render estimation of each alternative practical. As an example, the method is applied to an item response theory (IRT) model, that is, to the two-parameter model. The method is used to investigate differential item functioning and violations of the assumption of local independence. 相似文献
14.
In many applications involving time-varying parameter VARs, it is desirable to restrict the VAR coefficients at each point in time to be non-explosive. This is an example of a problem where inequality restrictions are imposed on states in a state space model. In this paper, we describe how existing MCMC algorithms for imposing such inequality restrictions can work poorly (or not at all) and suggest alternative algorithms which exhibit better performance. Furthermore, we show that previous algorithms involve an approximation relating to a key prior integrating constant. Our algorithms are exact, not involving this approximation. In an application involving a commonly used U.S. data set, we present evidence that the algorithms proposed in this paper work well. 相似文献
15.
Juan Carlos Martín Concepción Román Augusto Voltes-Dorta 《Journal of Productivity Analysis》2009,31(3):163-176
There exists a common belief among researchers and regional policy makers that the actual central system of Aeropuertos Españoles y Navegación Aérea (AENA) should be changed to one more decentralized where airport managers could have more autonomy. The main objective of this article is to evaluate the efficiency of the Spanish airports using Markov chain Monte Carlo (MCMC) simulation to estimate a stochastic frontier analysis (SFA) model. Our results show the existence of a significant level of inefficiency in airport operations. Additionally, we provide efficient marginal cost estimates for each airport which also cast some doubts about the current pricing practices. 相似文献
16.
A new version of the local scale model of Shephard (1994) is presented. Its features are identically distributed evolution equation disturbances, the incorporation of in-the-mean effects, and the incorporation of variance regressors. A Bayesian posterior simulator and a new simulation smoother are presented. The model is applied to publicly available daily exchange rate and asset return series, and is compared with t-GARCH and Lognormal stochastic volatility formulations using Bayes factors. 相似文献
17.
In this paper we study the Candy model, a marked point process introduced by S toica et al. (2000) . We prove Ruelle and local stability, investigate its Markov properties, and discuss how the model may be sampled. Finally, we consider estimation of the model parameters and present a simulation study. 相似文献
18.
《Spatial Economic Analysis》2013,8(3):275-304
Abstract We attempt to clarify a number of points regarding use of spatial regression models for regional growth analysis. We show that as in the case of non-spatial growth regressions, the effect of initial regional income levels wears off over time. Unlike the non-spatial case, long-run regional income levels depend on: own region as well as neighbouring region characteristics, the spatial connectivity structure of the regions, and the strength of spatial dependence. Given this, the search for regional characteristics that exert important influences on income levels or growth rates should take place using spatial econometric methods that account for spatial dependence as well as own and neighbouring region characteristics, the type of spatial regression model specification, and weight matrix. The framework adopted here illustrates a unified approach for dealing with these issues. 相似文献
19.
We propose and examine a panel data model for isolating the effect of a treatment, taken once at baseline, from outcomes observed over subsequent time periods. In the model, the treatment intake and outcomes are assumed to be correlated, due to unobserved or unmeasured confounders. Intake is partly determined by a set of instrumental variables and the confounding on unobservables is modeled in a flexible way, varying both by time and treatment state. Covariate effects are assumed to be subject-specific and potentially correlated with other covariates. Estimation and inference is by Bayesian methods that are implemented by tuned Markov chain Monte Carlo methods. Because our analysis is based on the framework developed by Chib [2004. Analysis of treatment response data without the joint distribution of counterfactuals. Journal of Econometrics, in press], the modeling and estimation does not involve either the unknowable joint distribution of the potential outcomes or the missing counterfactuals. The problem of model choice through marginal likelihoods and Bayes factors is also considered. The methods are illustrated in simulation experiments and in an application dealing with the effect of participation in high school athletics on future labor market earnings. 相似文献
20.
Ana Corberán-ValletJosé D. Bermúdez Enriqueta Vercher 《International Journal of Forecasting》2011,27(2):252
This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples. 相似文献