共查询到20条相似文献,搜索用时 0 毫秒
1.
Liqun Wang 《Journal of econometrics》2011,165(1):30-44
This paper deals with a nonlinear errors-in-variables model where the distributions of the unobserved predictor variables and of the measurement errors are nonparametric. Using the instrumental variable approach, we propose method of moments estimators for the unknown parameters and simulation-based estimators to overcome the possible computational difficulty of minimizing an objective function which involves multiple integrals. Both estimators are consistent and asymptotically normally distributed under fairly general regularity conditions. Moreover, root-n consistent semiparametric estimators and a rank condition for model identifiability are derived using the combined methods of the nonparametric technique and Fourier deconvolution. 相似文献
2.
This paper presents a Bayesian approach to bandwidth selection for multivariate kernel regression. A Monte Carlo study shows that under the average squared error criterion, the Bayesian bandwidth selector is comparable to the cross-validation method and clearly outperforms the bootstrapping and rule-of-thumb bandwidth selectors. The Bayesian bandwidth selector is applied to a multivariate kernel regression model that is often used to estimate the state-price density of Arrow–Debreu securities with the S&P 500 index options data and the DAX index options data. The proposed Bayesian bandwidth selector represents a data-driven solution to the problem of choosing bandwidths for the multivariate kernel regression involved in the nonparametric estimation of the state-price density pioneered by Aït-Sahalia and Lo [Aït-Sahalia, Y., Lo, A.W., 1998. Nonparametric estimation of state-price densities implicit in financial asset prices. The Journal of Finance, 53, 499, 547.] 相似文献
3.
We consider nonparametric/semiparametric estimation and testing of econometric models with data dependent smoothing parameters. Most of the existing works on asymptotic distributions of a nonparametric/semiparametric estimator or a test statistic are based on some deterministic smoothing parameters, while in practice it is important to use data-driven methods to select the smoothing parameters. In this paper we give a simple sufficient condition that can be used to establish the first order asymptotic equivalence of a nonparametric estimator or a test statistic with stochastic smoothing parameters to those using deterministic smoothing parameters. We also allow for general weakly dependent data. 相似文献
4.
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. 相似文献
5.
6.
Bayesian averaging,prediction and nonnested model selection 总被引:1,自引:0,他引:1
This paper studies the asymptotic relationship between Bayesian model averaging and post-selection frequentist predictors in both nested and nonnested models. We derive conditions under which their difference is of a smaller order of magnitude than the inverse of the square root of the sample size in large samples. This result depends crucially on the relation between posterior odds and frequentist model selection criteria. Weak conditions are given under which consistent model selection is feasible, regardless of whether models are nested or nonnested and regardless of whether models are correctly specified or not, in the sense that they select the best model with the least number of parameters with probability converging to 1. Under these conditions, Bayesian posterior odds and BICs are consistent for selecting among nested models, but are not consistent for selecting among nonnested models and possibly overlapping models. These findings have important bearing for applied researchers who are frequent users of model selection tools for empirical investigation of model predictions. 相似文献
7.
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing non-stochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series nonparametric estimates of the score function are employed in adaptive estimates of parameters of interest. These estimates are as efficient as the ones based on a correct form, in particular they are more efficient than pseudo-Gaussian maximum likelihood estimates at non-Gaussian distributions. Two different adaptive estimates are considered, relying on somewhat different regularity conditions. A Monte Carlo study of finite sample performance is included. 相似文献
8.
In this paper we investigate a spatial Durbin error model with finite distributed lags and consider the Bayesian MCMC estimation of the model with a smoothness prior. We study also the corresponding Bayesian model selection procedure for the spatial Durbin error model, the spatial autoregressive model and the matrix exponential spatial specification model. We derive expressions of the marginal likelihood of the three models, which greatly simplify the model selection procedure. Simulation results suggest that the Bayesian estimates of high order spatial distributed lag coefficients are more precise than the maximum likelihood estimates. When the data is generated with a general declining pattern or a unimodal pattern for lag coefficients, the spatial Durbin error model can better capture the pattern than the SAR and the MESS models in most cases. We apply the procedure to study the effect of right to work (RTW) laws on manufacturing employment. 相似文献
9.
This paper proposes a class of locally stationary diffusion processes. The model has a time varying but locally linear drift and a volatility coefficient that is allowed to vary over time and space. The model is semiparametric because we allow these functions to be unknown and the innovation process is parametrically specified, indeed completely known. We propose estimators of all the unknown quantities based on long span data. Our estimation method makes use of the property of local stationarity. We establish asymptotic theory for the proposed estimators as the time span increases, so we do not rely on infill asymptotics. We apply this method to interest rate data to illustrate the validity of our model. Finally, we present a simulation study to provide the finite-sample performance of the proposed estimators. 相似文献
10.
This paper studies the semiparametric binary response model with interval data investigated by Manski and Tamer (2002). In this partially identified model, we propose a new estimator based on MT’s modified maximum score (MMS) method by introducing density weights to the objective function, which allows us to develop asymptotic properties of the proposed set estimator for inference. We show that the density-weighted MMS estimator converges at a nearly cube-root-n rate. We propose an asymptotically valid inference procedure for the identified region based on subsampling. Monte Carlo experiments provide supports to our inference procedure. 相似文献
11.
Martijn van Hasselt 《Journal of econometrics》2011,165(2):221-232
This paper develops methods of Bayesian inference in a sample selection model. The main feature of this model is that the outcome variable is only partially observed. We first present a Gibbs sampling algorithm for a model in which the selection and outcome errors are normally distributed. The algorithm is then extended to analyze models that are characterized by nonnormality. Specifically, we use a Dirichlet process prior and model the distribution of the unobservables as a mixture of normal distributions with a random number of components. The posterior distribution in this model can simultaneously detect the presence of selection effects and departures from normality. Our methods are illustrated using some simulated data and an abstract from the RAND health insurance experiment. 相似文献
12.
Our goal is inference for shape-restricted functions. Our functional form consists of finite linear combinations of basis functions. Prior elicitation is difficult due to the irregular shape of the parameter space. We show how to elicit priors that are flexible, theoretically consistent, and proper. We demonstrate that uniform priors over coefficients imply priors over economically relevant quantities that are quite informative and give an example of a non-uniform prior that addresses this issue. We introduce simulation methods that meet challenges posed by the shape of the parameter space. We analyze data from a consumer demand experiment. 相似文献
13.
This paper proposes a fully nonparametric procedure to evaluate the effect of a counterfactual change in the distribution of some covariates on the unconditional distribution of an outcome variable of interest. In contrast to other methods, we do not restrict attention to the effect on the mean. In particular, our method can be used to conduct inference on the change of the distribution function as a whole, its moments and quantiles, inequality measures such as the Lorenz curve or Gini coefficient, and to test for stochastic dominance. The practical applicability of our procedure is illustrated via a simulation study and an empirical example. 相似文献
14.
We propose an alternative method for estimating the nonlinear component in semiparametric panel data models. Our method is based on marginal integration that allows us to recover the nonlinear component from an additive regression structure that results from the first differencing transformation. We characterize the asymptotic behavior of our estimator. We also extend the methodology to treat panel data models with two-way effects. Monte Carlo simulations show that our estimator behaves well in finite samples in both random effects and fixed effects settings. 相似文献
15.
This paper presents efficient semiparametric estimators for endogenously stratified regression with two strata, in the case where the error distribution is unknown and the regressors are independent of the error term. The method is based on the use of a kernel-smoothed likelihood function which provides an explicit solution for the maximization problem for the unknown density function without losing information in the asymptotic limit. We consider both standard stratified sampling and variable probability sampling, and allow for the population shares of the strata to be either unknown or known a priori. 相似文献
16.
In this paper estimators for distribution free heteroskedastic binary response models are proposed. The estimation procedures are based on relationships between distribution free models with a conditional median restriction and parametric models (such as Probit/Logit) exhibiting (multiplicative) heteroskedasticity. The first proposed estimator is based on the observational equivalence between the two models, and is a semiparametric sieve estimator (see, e.g. Gallant and Nychka (1987), Ai and Chen (2003) and Chen et al. (2005)) for the regression coefficients, based on maximizing standard Logit/Probit criterion functions, such as NLLS and MLE. This procedure has the advantage that choice probabilities and regression coefficients are estimated simultaneously. The second proposed procedure is based on the equivalence between existing semiparametric estimators for the conditional median model (, and ) and the standard parametric (Probit/Logit) NLLS estimator. This estimator has the advantage of being implementable with standard software packages such as Stata. Distribution theory is developed for both estimators and a Monte Carlo study indicates they both perform well in finite samples. 相似文献
17.
Estimating high-dimensional demand systems in the presence of many binding non-negativity constraints 总被引:1,自引:0,他引:1
Two econometric issues arise in the structural estimation of consumer or producer demand systems in the presence of many binding non-negativity constraints. Firstly, most existing methods entail the evaluation of multivariate probability integrals. Secondly, the issue of statistical coherency must be addressed. We circumvent both of these issues using Gibbs’ Sampling, along with data augmentation and rejection sampling. We illustrate our method using several simulated data sets. 相似文献
18.
A neglected aspect of the otherwise fairly well developed Bayesian analysis of cointegration is point estimation of the cointegration space. It is pointed out here that, due to the well known non-identification of the cointegration vectors, the parameter space is not Euclidean and the loss functions underlying the conventional Bayes estimators are therefore questionable. We present a Bayes estimator of the cointegration space which takes the curved geometry of the parameter space into account. This estimate has the interpretation of being the posterior mean cointegration space and is invariant to the order of the time series, a property not shared with many of the Bayes estimators in the cointegration literature. An overall measure of cointegration space uncertainty is also proposed. Australian interest rate data are used for illustration. A small simulation study shows that the new Bayes estimator compares favorably to the maximum likelihood estimator. 相似文献
19.
We describe procedures for Bayesian estimation and testing in cross-sectional, panel data and nonlinear smooth coefficient models. The smooth coefficient model is a generalization of the partially linear or additive model wherein coefficients on linear explanatory variables are treated as unknown functions of an observable covariate. In the approach we describe, points on the regression lines are regarded as unknown parameters and priors are placed on differences between adjacent points to introduce the potential for smoothing the curves. The algorithms we describe are quite simple to implement—for example, estimation, testing and smoothing parameter selection can be carried out analytically in the cross-sectional smooth coefficient model. 相似文献
20.
In this paper we consider the problem of semiparametric efficient estimation in conditional quantile models with time series data. We construct an M-estimator which achieves the semiparametric efficiency bound recently derived by Komunjer and Vuong (forthcoming). Our efficient M-estimator is obtained by minimizing an objective function which depends on a nonparametric estimator of the conditional distribution of the variable of interest rather than its density. The estimator is new and not yet seen in the literature. We illustrate its performance through a Monte Carlo experiment. 相似文献