首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper provides closed-form likelihood approximations for multivariate jump-diffusion processes widely used in finance. For a fixed order of approximation, the maximum-likelihood estimator (MLE) computed from this approximate likelihood achieves the asymptotic efficiency of the true yet uncomputable MLE as the sampling interval shrinks. This method is used to uncover the realignment probability of the Chinese Yuan. Since February 2002, the market-implied realignment intensity has increased fivefold. The term structure of the forward realignment rate, which completely characterizes future realignment probabilities, is hump-shaped and peaks at mid-2004. The realignment probability responds quickly to economic news releases and government interventions.  相似文献   

2.
This paper considers parametric inference in a wide range of structural econometric models. It illustrates how the indirect inference principle can be used in the inference of these models. Specifically, we show that an ordinary least squares (OLS) estimation can be used as an auxiliary model, which leads to a method that is similar in spirit to a two-stage least squares (2SLS) estimator. Monte Carlo studies and an empirical analysis of timber sale auctions held in Oregon illustrate the usefulness and feasibility of our approach.  相似文献   

3.
In the presence of heteroskedastic disturbances, the MLE for the SAR models without taking into account the heteroskedasticity is generally inconsistent. The 2SLS estimates can have large variances and biases for cases where regressors do not have strong effects. In contrast, GMM estimators obtained from certain moment conditions can be robust. Asymptotically valid inferences can be drawn with consistently estimated covariance matrices. Efficiency can be improved by constructing the optimal weighted estimation.  相似文献   

4.
In this paper estimators for distribution free heteroskedastic binary response models are proposed. The estimation procedures are based on relationships between distribution free models with a conditional median restriction and parametric models (such as Probit/Logit) exhibiting (multiplicative) heteroskedasticity. The first proposed estimator is based on the observational equivalence between the two models, and is a semiparametric sieve estimator (see, e.g. Gallant and Nychka (1987), Ai and Chen (2003) and Chen et al. (2005)) for the regression coefficients, based on maximizing standard Logit/Probit criterion functions, such as NLLS and MLE. This procedure has the advantage that choice probabilities and regression coefficients are estimated simultaneously. The second proposed procedure is based on the equivalence between existing semiparametric estimators for the conditional median model (,  and ) and the standard parametric (Probit/Logit) NLLS estimator. This estimator has the advantage of being implementable with standard software packages such as Stata. Distribution theory is developed for both estimators and a Monte Carlo study indicates they both perform well in finite samples.  相似文献   

5.
This paper considers identification and estimation of structural interaction effects in a social interaction model. The model allows unobservables in the group structure, which may be correlated with included regressors. We show that both the endogenous and exogenous interaction effects can be identified if there are sufficient variations in group sizes. We consider the estimation of the model by the conditional maximum likelihood and instrumental variables methods. For the case with large group sizes, the possible identification can be weak in the sense that the estimates converge in distribution at low rates.  相似文献   

6.
GMM and 2SLS estimation of mixed regressive,spatial autoregressive models   总被引:2,自引:0,他引:2  
The GMM method and the classical 2SLS method are considered for the estimation of mixed regressive, spatial autoregressive models. These methods have computational advantage over the conventional maximum likelihood method. The proposed GMM estimators are shown to be consistent and asymptotically normal. Within certain classes of GMM estimators, best ones are derived. The proposed GMM estimators improve upon the 2SLS estimators and are applicable even if all regressors are irrelevant. A best GMM estimator may have the same limiting distribution as the ML estimator (with normal disturbances).  相似文献   

7.
GMM estimators have poor finite sample properties in highly overidentified models. With many moment conditions the optimal weighting matrix is poorly estimated. We suggest using principal components of the weighting matrix. This effectively drops some of the moment conditions. Our simulations, done in the context of the dynamic panel data model, show that the resulting GMM estimator has better finite sample properties than the usual two-step GMM estimator, in the sense of smaller bias and more reliable standard errors.  相似文献   

8.
This paper deals with a nonlinear errors-in-variables model where the distributions of the unobserved predictor variables and of the measurement errors are nonparametric. Using the instrumental variable approach, we propose method of moments estimators for the unknown parameters and simulation-based estimators to overcome the possible computational difficulty of minimizing an objective function which involves multiple integrals. Both estimators are consistent and asymptotically normally distributed under fairly general regularity conditions. Moreover, root-n consistent semiparametric estimators and a rank condition for model identifiability are derived using the combined methods of the nonparametric technique and Fourier deconvolution.  相似文献   

9.
This paper introduces a drifting-parameter asymptotic framework to derive accurate approximations to the finite sample distribution of the principal components (PC) estimator in situations when the factors’ explanatory power does not strongly dominate the explanatory power of the cross-sectionally and temporally correlated idiosyncratic terms. Under our asymptotics, the PC estimator is inconsistent. We find explicit formulae for the amount of the inconsistency, and propose an estimator of the number of factors for which the PC estimator works reasonably well. For the special case when the idiosyncratic terms are cross-sectionally but not temporally correlated (or vice versa), we show that the coefficients in the OLS regressions of the PC estimates of factors (loadings) on the true factors (true loadings) are asymptotically normal, and find explicit formulae for the corresponding asymptotic covariance matrix. We explain how to estimate the parameters of the derived asymptotic distributions. Our Monte Carlo analysis suggests that our asymptotic formulae and estimators work well even for relatively small nn and TT. We apply our theoretical results to test a hypothesis about the factor content of the US stock return data.  相似文献   

10.
Sequential maximum likelihood and GMM estimators of distributional parameters obtained from the standardised innovations of multivariate conditionally heteroskedastic dynamic regression models evaluated at Gaussian PML estimators preserve the consistency of mean and variance parameters while allowing for realistic distributions. We assess their efficiency, and obtain moment conditions leading to sequential estimators as efficient as their joint ML counterparts. We also obtain standard errors for VaR and CoVaR, and analyse the effects on these measures of distributional misspecification. Finally, we illustrate the small sample performance of these procedures through simulations and apply them to analyse the risk of large eurozone banks.  相似文献   

11.
This study develops a methodology of inference for a widely used Cliff–Ord type spatial model containing spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing for unknown heteroskedasticity in the innovations. We first generalize the GMM estimator suggested in  and  for the spatial autoregressive parameter in the disturbance process. We also define IV estimators for the regression parameters of the model and give results concerning the joint asymptotic distribution of those estimators and the GMM estimator. Much of the theory is kept general to cover a wide range of settings.  相似文献   

12.
This paper explores the asymptotic distribution of the cointegrating vector estimator in error correction models with conditionally heteroskedastic errors. Asymptotic properties of the maximum likelihood estimator (MLE) of the cointegrating vector, which estimates the cointegrating vector and the multivariate GARCH process jointly, are provided. The MLE of the cointegrating vector follows mixture normal, and its asymptotic distribution depends on the conditional heteroskedasticity and the kurtosis of standardized innovations. The reduced rank regression (RRR) estimator and the regression-based cointegrating vector estimators do not consider conditional heteroskedasticity, and thus the efficiency gain of the MLE emerges as the magnitude of conditional heteroskedasticity increases. The simulation results indicate that the relative power of the t-statistics based on the MLE improves significantly as the GARCH effect increases.  相似文献   

13.
This paper considers the issue of selecting the number of regressors and the number of structural breaks in multivariate regression models in the possible presence of multiple structural changes. We develop a modified Akaike information criterion (AIC), a modified Mallows’ Cp criterion and a modified Bayesian information criterion (BIC). The penalty terms in these criteria are shown to be different from the usual terms. We prove that the modified BIC consistently selects the regressors and the number of breaks whereas the modified AIC and the modified Cp criterion tend to overfit with positive probability. The finite sample performance of these criteria is investigated through Monte Carlo simulations and it turns out that our modification is successful in comparison to the classical model selection criteria and the sequential testing procedure robust to heteroskedasticity and autocorrelation.  相似文献   

14.
We study regression models that involve data sampled at different frequencies. We derive the asymptotic properties of the NLS estimators of such regression models and compare them with the LS estimators of a traditional model that involves aggregating or equally weighting data to estimate a model at the same sampling frequency. In addition we propose new tests to examine the null hypothesis of equal weights in aggregating time series in a regression model. We explore the above theoretical aspects and verify them via an extensive Monte Carlo simulation study and an empirical application.  相似文献   

15.
This paper proposes a two-step maximum likelihood estimation (MLE) procedure to deal with the problem of endogeneity in Markov-switching regression models. A joint estimation procedure provides us with an asymptotically most efficient estimator, but it is not always feasible, due to the ‘curse of dimensionality’ in the matrix of transition probabilities. A two-step estimation procedure, which ignores potential correlation between the latent state variables, suffers less from the ‘curse of dimensionality’, and it provides a reasonable alternative to the joint estimation procedure. In addition, our Monte Carlo experiments show that the two-step estimation procedure can be more efficient than the joint estimation procedure in finite samples, when there is zero or low correlation between the latent state variables.  相似文献   

16.
A neglected aspect of the otherwise fairly well developed Bayesian analysis of cointegration is point estimation of the cointegration space. It is pointed out here that, due to the well known non-identification of the cointegration vectors, the parameter space is not Euclidean and the loss functions underlying the conventional Bayes estimators are therefore questionable. We present a Bayes estimator of the cointegration space which takes the curved geometry of the parameter space into account. This estimate has the interpretation of being the posterior mean cointegration space and is invariant to the order of the time series, a property not shared with many of the Bayes estimators in the cointegration literature. An overall measure of cointegration space uncertainty is also proposed. Australian interest rate data are used for illustration. A small simulation study shows that the new Bayes estimator compares favorably to the maximum likelihood estimator.  相似文献   

17.
This paper considers the specification and estimation of social interaction models with network structures and the presence of endogenous, contextual, correlated, and group fixed effects. When the network structure in a group is captured by a graph in which the degrees of nodes are not all equal, the different positions of group members as measured by the Bonacich (1987) centrality provide additional information for identification and estimation. In this case, the Bonacich centrality measure for each group can be used as an instrument for the endogenous social effect, but the number of such instruments grows with the number of groups. We consider the 2SLS and GMM estimation for the model. The proposed estimators are asymptotically efficient, respectively, within the class of IV estimators and the class of GMM estimators based on linear and quadratic moments, when the sample size grows fast enough relative to the number of instruments.  相似文献   

18.
Maximum Likelihood (ML) estimation of probit models with correlated errors typically requires high-dimensional truncated integration. Prominent examples of such models are multinomial probit models and binomial panel probit models with serially correlated errors. In this paper we propose to use a generic procedure known as Efficient Importance Sampling (EIS) for the evaluation of likelihood functions for probit models with correlated errors. Our proposed EIS algorithm covers the standard GHK probability simulator as a special case. We perform a set of Monte Carlo experiments in order to illustrate the relative performance of both procedures for the estimation of a multinomial multiperiod probit model. Our results indicate substantial numerical efficiency gains for ML estimates based on the GHK–EIS procedure relative to those obtained by using the GHK procedure.  相似文献   

19.
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.  相似文献   

20.
This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large (n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimated via the Kalman smoother. The analysis develops the theory for the estimator considered in Giannone et al. (2004) and Giannone et al. (2008) and for the many empirical papers using this framework for nowcasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号