首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many key macroeconomic and financial variables are characterized by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special cases. We show that the conventional rank statistics computed as in  and  are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identified inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, or to assume that the pattern of volatility is common to, or independent across, the vector of series under analysis. The bootstrap is shown to perform very well in practice.  相似文献   

2.
We study estimation of the date of change in persistence, from I(0)I(0) to I(1)I(1) or vice versa. Contrary to statements in the original papers, our analytical results establish that the ratio-based break point estimators of Kim [Kim, J.Y., 2000. Detection of change in persistence of a linear time series. Journal of Econometrics 95, 97–116], Kim et al. [Kim, J.Y., Belaire-Franch, J., Badillo Amador, R., 2002. Corringendum to “Detection of change in persistence of a linear time series”. Journal of Econometrics 109, 389–392] and Busetti and Taylor [Busetti, F., Taylor, A.M.R., 2004. Tests of stationarity against a change in persistence. Journal of Econometrics 123, 33–66] are inconsistent when a mean (or other deterministic component) is estimated for the process. In such cases, the estimators converge to random variables with upper bound given by the true break date when persistence changes from I(0)I(0) to I(1)I(1). A Monte Carlo study confirms the large sample downward bias and also finds substantial biases in moderate sized samples, partly due to properties at the end points of the search interval.  相似文献   

3.
In this paper we provide a joint treatment of two major problems that surround testing for a unit root in practice: uncertainty as to whether or not a linear deterministic trend is present in the data, and uncertainty as to whether the initial condition of the process is (asymptotically) negligible or not. We suggest decision rules based on the union of rejections of four standard unit root tests (OLS and quasi-differenced demeaned and detrended ADF unit root tests), along with information regarding the magnitude of the trend and initial condition, to allow simultaneously for both trend and initial condition uncertainty.  相似文献   

4.
Tests of ARCH are a routine diagnostic in empirical econometric and financial analysis. However, it is well known that misspecification of the conditional mean may lead to spurious rejection of the null hypothesis of no ARCH. Nonlinearity is a prime example of this phenomenon. There is little work on the extent of the effect of neglected nonlinearity on the properties of ARCH tests. We investigate this using new ARCH testing procedures that are robust to the presence of neglected nonlinearity. Monte Carlo evidence shows that the problem is serious and that the new methods alleviate this problem to a very large extent. We apply the new tests to exchange rate data and find substantial evidence of spurious rejection of the null hypothesis of no ARCH.  相似文献   

5.
We consider the impact of a break in the innovation volatility process on ratio‐based persistence change tests. We demonstrate that the ratio statistics used do not have pivotal limiting null distributions and that the associated tests display a considerable degree of size distortion with size approaching unity in some cases. In practice, therefore, on the basis of these tests the practitioner will face difficulty in discriminating between persistence change processes and processes which display a simple volatility break. A wild bootstrap‐based solution to the identified inference problem is proposed and is shown to work well in practice.  相似文献   

6.
Detecting structural changes in volatility is important for understanding volatility dynamics and stylized facts observed for financial returns such as volatility persistence. We propose modified CUSUM and LM tests that are built on a robust estimator of the long-run variance of squared series. We establish conditions under which the new tests have standard null distributions and diverge faster than standard tests under the alternative. The theory allows smooth and abrupt structural changes that can be small. The smoothing parameter is automatically selected such that the proposed test has good finite-sample size and meanwhile achieves decent power gain.  相似文献   

7.
Harvey, Leybourne and Taylor [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. 2009. Simple, robust and powerful tests of the breaking trend hypothesis. Econometric Theory 25, 995–1029] develop a test for the presence of a broken linear trend at an unknown point in the sample whose size is asymptotically robust as to whether the (unknown) order of integration of the data is either zero or one. This test is not size controlled, however, when this order assumes fractional values; its asymptotic size can be either zero or one in such cases. In this paper we suggest a new test, based on a sup-Wald statistic, which is asymptotically size-robust across fractional values of the order of integration (including zero or one). We examine the asymptotic power of the test under a local trend break alternative. The finite sample properties of the test are also investigated.  相似文献   

8.
This paper is concerned with the discrete time stochastic volatility model Yi=exp(Xi/2)ηiYi=exp(Xi/2)ηi, Xi+1=b(Xi)+σ(Xi)ξi+1Xi+1=b(Xi)+σ(Xi)ξi+1, where only (Yi)(Yi) is observed. The model is rewritten as a particular hidden model: Zi=Xi+εiZi=Xi+εi, Xi+1=b(Xi)+σ(Xi)ξi+1Xi+1=b(Xi)+σ(Xi)ξi+1, where (ξi)(ξi) and (εi)(εi) are independent sequences of i.i.d. noise. Moreover, the sequences (Xi)(Xi) and (εi)(εi) are independent and the distribution of εε is known. Then, our aim is to estimate the functions bb and σ2σ2 when only observations Z1,…,ZnZ1,,Zn are available. We propose to estimate bfbf and (b22)f(b2+σ2)f and study the integrated mean square error of projection estimators of these functions on automatically selected projection spaces. By ratio strategy, estimators of bb and σ2σ2 are then deduced. The mean square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation experiments are provided: constants in the penalty functions defining the estimators are calibrated and the quality of the estimators is checked on several examples.  相似文献   

9.
Testing for unit roots in time series models with non-stationary volatility   总被引:2,自引:0,他引:2  
Many of the key macro-economic and financial variables in developed economies are characterized by permanent volatility shifts. It is known that conventional unit root tests are potentially unreliable in the presence of such behaviour, depending on a particular function (the variance profile) of the underlying volatility process. Somewhat surprisingly then, very little work has been undertaken to develop unit root tests which are robust to the presence of permanent volatility shifts. In this paper we fill this gap in the literature by proposing tests which are valid in the presence of a quite general class of permanent variance changes which includes single and multiple (abrupt and smooth-transition) volatility change processes as special cases. Our solution uses numerical methods to simulate the asymptotic null distribution of the statistics based on a consistent estimate of the variance profile which we also develop. The practitioner is not required to specify a parametric model for volatility. An empirical illustration using producer price inflation series from the Stock–Watson database is reported.  相似文献   

10.
This paper introduces the concept of risk parameter in conditional volatility models of the form ?t=σt(θ0)ηt?t=σt(θ0)ηt and develops statistical procedures to estimate this parameter. For a given risk measure rr, the risk parameter is expressed as a function of the volatility coefficients θ0θ0 and the risk, r(ηt)r(ηt), of the innovation process. A two-step method is proposed to successively estimate these quantities. An alternative one-step approach, relying on a reparameterization of the model and the use of a non Gaussian QML, is proposed. Asymptotic results are established for smooth risk measures, as well as for the Value-at-Risk (VaR). Asymptotic comparisons of the two approaches for VaR estimation suggest a superiority of the one-step method when the innovations are heavy-tailed. For standard GARCH models, the comparison only depends on characteristics of the innovations distribution, not on the volatility parameters. Monte-Carlo experiments and an empirical study illustrate the superiority of the one-step approach for financial series.  相似文献   

11.
We introduce a framework which allows us to draw a clear parallel between the test for the presence of seasonal unit roots and that for unit root at frequency 0 (or ππ). It relies on the properties of the complex conjugate integrated of order one processes which are implicitly at work in the real time series. In the same framework as that of Phillips and Perron (Biometrica 75 (1988) 335), we derive tests for the presence of a pair of conjugate complex unit roots. The asymptotic distribution we obtain are formally close to those derived by these authors but expressed with complex Wiener processes. We then introduce sequences of near-integrated processes which allow us to study the local-to-unity asymptotic of the above test statistics. We state a result on the weak convergence of the partial sum of complex near-random walks which leads to complex Orstein–Uhlenbeck processes. Drawing on Elliott et al. (Econometrica 64 (1996) 813) we then study the design of point-optimal invariant test procedures and compute their envelope employing local-to-unity asymptotic approximations. This leads us to introduce new feasible and near efficient seasonal unit root tests. Their finite sample properties are investigated and compared with the different test procedures already available (J. Econometrics 44 (1991) 215; 62 (1994) 415; 85 (1998) 269) and those introduced in the first part of the paper.  相似文献   

12.
This paper proposes a robustification of the test statistic of Aït-Sahalia and Jacod (2009b) for the presence of market microstructure noise in high frequency data, based on the pre-averaging method of Jacod et al. (2010). We show that the robustified statistic restores the test’s discriminating power between jumps and no jumps despite the presence of market microstructure noise in the data.  相似文献   

13.
This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility estimators based on high frequency data. To remedy this, we derive Edgeworth expansions for such estimators. The expansions are developed in the framework of small-noise asymptotics. The results have application to Cornish–Fisher inversion and help setting intervals more accurately than those relying on normal distribution.  相似文献   

14.
This paper presents new methods for comparing the accuracy of estimators of the quadratic variation of a price process. I provide conditions under which the relative accuracy of competing estimators can be consistently estimated (as T), and show that forecast evaluation tests may be adapted to the problem of ranking these estimators. The proposed methods avoid making specific assumptions about microstructure noise, and facilitate comparisons of estimators that would be difficult using methods from the extant literature, such as those based on different sampling schemes. An application to high frequency IBM data between 1996 and 2007 illustrates the new methods.  相似文献   

15.
This paper considers the problem of forecasting under continuous and discrete structural breaks and proposes weighting observations to obtain optimal forecasts in the MSFE sense. We derive optimal weights for one step ahead forecasts. Under continuous breaks, our approach largely recovers exponential smoothing weights. Under discrete breaks, we provide analytical expressions for optimal weights in models with a single regressor, and asymptotically valid weights for models with more than one regressor. It is shown that in these cases the optimal weight is the same across observations within a given regime and differs only across regimes. In practice, where information on structural breaks is uncertain, a forecasting procedure based on robust optimal weights is proposed. The relative performance of our proposed approach is investigated using Monte Carlo experiments and an empirical application to forecasting real GDP using the yield curve across nine industrial economies.  相似文献   

16.
In situations where a regression model is subject to one or more breaks it is shown that it can be optimal to use pre-break data to estimate the parameters of the model used to compute out-of-sample forecasts. The issue of how best to exploit the trade-off that might exist between bias and forecast error variance is explored and illustrated for the multivariate regression model under the assumption of strictly exogenous regressors. In practice when this assumption cannot be maintained and both the time and size of the breaks are unknown, the optimal choice of the observation window will be subject to further uncertainties that make exploiting the bias–variance trade-off difficult. To that end we propose a new set of cross-validation methods for selection of a single estimation window and weighting or pooling methods for combination of forecasts based on estimation windows of different lengths. Monte Carlo simulations are used to show when these procedures work well compared with methods that ignore the presence of breaks.  相似文献   

17.
Modelling volatility by variance decomposition   总被引:1,自引:0,他引:1  
In this paper, we propose two parametric alternatives to the standard GJR-GARCH model of Glosten et al. (1993), based on additive and multiplicative decompositions of the variance. They allow the variance of the model to have a smooth time-varying structure. The suggested parameterizations describe structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decomposition of the variance into an unconditional and conditional components. Estimation of the multiplicative model is discussed in detail. An empirical application to daily stock returns illustrates the functioning of the model. The results show that the ‘long memory type behaviour’ of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance.  相似文献   

18.
This paper extends the cross-sectionally augmented panel unit root test (CIPSCIPS) proposed by Pesaran (2007) to the case of a multifactor error structure, and proposes a new panel unit root test based on a simple average of cross-sectionally augmented Sargan–Bhargava statistics (CSBCSB). The basic idea is to exploit information regarding the mm unobserved factors that are shared by kk observed time series in addition to the series under consideration. Initially, we develop the tests assuming that m0m0, the true number of factors, is known and show that the limit distribution of the tests does not depend on any nuisance parameters, so long as k≥m0−1km01. Small sample properties of the tests are investigated by Monte Carlo experiments and are shown to be satisfactory. Particularly, the proposed CIPSCIPS and CSBCSB tests have the correct size for all   combinations of the cross section (NN) and time series (TT) dimensions considered. The power of both tests rises with NN and TT, although the CSBCSB test performs better than the CIPSCIPS test for smaller sample sizes. The various testing procedures are illustrated with empirical applications to real interest rates and real equity prices across countries.  相似文献   

19.
Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein–Uhlenbeck (OU) process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or jumps, into the volatility process. They also consider superpositions of such processes and we extend that to the inclusion of a jump component in the returns. In addition, we allow for leverage effects and we introduce separate risk pricing for the volatility components. We design and implement practically relevant inference methods for such models, within the Bayesian paradigm. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and we use a series representation of Lévy processes. MCMC methods for such models are complicated by the fact that parameter changes will often induce a change in the distribution of the representation of the process and the associated problem of overconditioning. We avoid this problem by dependent thinning methods. An application to stock price data shows the models perform very well, even in the face of data with rapid changes, especially if a superposition of processes with different risk premiums and a leverage effect is used.  相似文献   

20.
Volatility forecast comparison using imperfect volatility proxies   总被引:1,自引:0,他引:1  
The use of a conditionally unbiased, but imperfect, volatility proxy can lead to undesirable outcomes in standard methods for comparing conditional variance forecasts. We motivate our study with analytical results on the distortions caused by some widely used loss functions, when used with standard volatility proxies such as squared returns, the intra-daily range or realised volatility. We then derive necessary and sufficient conditions on the functional form of the loss function for the ranking of competing volatility forecasts to be robust to the presence of noise in the volatility proxy, and derive some useful special cases of this class of “robust” loss functions. The methods are illustrated with an application to the volatility of returns on IBM over the period 1993 to 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号