首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider a class of time series specification tests based on quadratic forms of weighted sums of residuals autocorrelations. Asymptotically distribution-free tests in the presence of estimated parameters are obtained by suitably transforming the weights, which can be optimally chosen to maximize the power function when testing in the direction of local alternatives. We discuss in detail an asymptotically optimal distribution-free alternative to the popular Box–Pierce when testing in the direction of AR or MA alternatives. The performance of the test with small samples is studied by means of a Monte Carlo experiment.  相似文献   

2.
This paper studies conditional moment restrictions that contain unknown nonparametric functions, and proposes a general method of obtaining asymptotically distribution-free tests via martingale transforms. Examples of such conditional moment restrictions are single index restrictions, partially parametric regressions, and partially parametric quantile regressions. This paper introduces a conditional martingale transform that is conditioned on the variable in the nonparametric function, and shows that we can generate distribution-free tests of various semiparametric conditional moment restrictions using this martingale transform. The paper proposes feasible martingale transforms using series estimation and establishes their asymptotic validity. Some results from a Monte Carlo simulation study are presented and discussed.  相似文献   

3.
The problem of specification tests for conditional models is studied when the data are subject to left truncation and right censoring. A general method is applied to derive tests for the polynomial regression, the proportional hazards, the additive risks and the proportional odds models. Bootstrap versions to approximate the critical values of the test are introduced and proved to work both from a theoretical viewpoint as well as in a small simulation study.  相似文献   

4.
This paper proposes exact distribution-free permutation tests for the specification of a non-linear regression model against one or more possibly non-nested alternatives. The new tests may be validly applied to a wide class of models, including models with endogenous regressors and lag structures. These tests build on the well-known J test developed by Davidson and MacKinnon [1981. Several tests for model specification in the presence of alternative hypotheses. Econometrica 49, 781–793] and their exactness holds under broader assumptions than those underlying the conventional J test. The J-type test statistics are used with a randomization or Monte Carlo resampling technique which yields an exact and computationally inexpensive inference procedure. A simulation experiment confirms the theoretical results and also shows the performance of the new procedure under violations of the maintained assumptions. The test procedure developed is illustrated by an application to inflation dynamics.  相似文献   

5.
Consider the location-scale regression model Y=m(X)+σ(X)?Y=m(X)+σ(X)?, where the error ?? is independent of the covariate X, and m   and σσ are smooth but unknown functions. We construct tests for the validity of this model and show that the asymptotic limits of the proposed test statistics are distribution free. We also investigate the finite sample properties of the tests through a simulation study, and we apply the tests in the analysis of data on food expenditures.  相似文献   

6.
This article proposes a class of asymptotically distribution-free specification tests for parametric conditional distributions. These tests are based on a martingale transform of a proper sequential empirical process of conditionally transformed data. Standard continuous functionals of this martingale provide omnibus tests while linear combinations of the orthogonal components in its spectral representation form a basis for directional tests. Finally, Neyman-type smooth tests, a compromise between directional and omnibus tests, are discussed. As a special example we study in detail the construction of directional tests for the null hypothesis of conditional normality versus heteroskedastic contiguous alternatives. A small Monte Carlo study shows that our tests attain the nominal level already for small sample sizes.  相似文献   

7.
Y is conditionally independent of Z given X   if Pr{f(y|X,Z)=f(y|X)}=1{f(y|X,Z)=f(y|X)}=1 for all y on its support, where f(·|·)f(·|·) denotes the conditional density of Y   given (X,Z)(X,Z) or X.X. This paper proposes a nonparametric test of conditional independence based on the notion that two conditional distributions are equal if and only if the corresponding conditional characteristic functions are equal. We extend the test of Su and White (2005. A Hellinger-metric nonparametric test for conditional independence. Discussion Paper, Department of Economics, UCSD) in two directions: (1) our test is less sensitive to the choice of bandwidth sequences; (2) our test has power against deviations on the full support of the density of (X,Y,ZX,Y,Z). We establish asymptotic normality for our test statistic under weak data dependence conditions. Simulation results suggest that the test is well behaved in finite samples. Applications to stock market data indicate that our test can reveal some interesting nonlinear dependence that a traditional linear Granger causality test fails to detect.  相似文献   

8.
In this paper we develop wavelet methods for detecting and estimating jumps and cusps in the mean function of a non-parametric regression model. An important characteristic of the model considered here is that it allows for conditional heteroscedastic variance, a feature frequently encountered with economic and financial data. Wavelet analysis of change-points in this model has been considered in a limited way in a recent study by Chen et al. (2008) with a focus on jumps only. One problem with the aforementioned paper is that the test statistic developed there has an extreme value null limit distribution. The results of other studies have shown that the rate of convergence to the extreme value distribution is usually very slow, and critical values derived from this distribution tend to be much larger than the true ones. Here, we develop a new test and show that the test statistic has a convenient null limit N(0,1) distribution. This feature gives the proposed approach an appealing advantage over the existing approach. Another attractive feature of our results is that the asymptotic theory developed here holds for both jumps and cusps. Implementation of the proposed method for multiple jumps and cusps is also examined. The results from a simulation study show that the new test has excellent power and the estimators developed also yield very accurate estimates of the positions of the discontinuities.  相似文献   

9.
In this paper, we propose two estimators, an integral estimator and a discretized estimator, for the wavelet coefficient of regression functions in nonparametric regression models with heteroscedastic variance. These estimators can be used to test the jumps of the regression function. The model allows for lagged-dependent variables and other mixing regressors. The asymptotic distributions of the statistics are established, and the asymptotic critical values are analytically obtained from the asymptotic distribution. We also use the test to determine consistent estimators for the locations of change points. The jump sizes and locations of change points can be consistently estimated using wavelet coefficients, and the convergency rates of these estimators are derived. We perform some Monte Carlo simulations to check the powers and sizes of the test statistics. Finally, we give practical examples in finance and economics to detect changes in stock returns and short-term interest rates using the empirical wavelet method.  相似文献   

10.
The practical relevance of several concepts of exogeneity of treatments for the estimation of causal parameters based on observational data are discussed. We show that the traditional concepts, such as strong ignorability and weak and super-exogeneity, are too restrictive if interest lies in average effects (i.e. not on distributional effects of the treatment). We suggest a new definition of exogeneity, KL-exogeneity. It does not rely on distributional assumptions and is not based on counterfactual random variables. As a consequence it can be empirically tested using a proposed test that is simple to implement and is distribution-free.  相似文献   

11.
We construct two classes of smoothed empirical likelihood ratio tests for the conditional independence hypothesis by writing the null hypothesis as an infinite collection of conditional moment restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based on smoother functions. We show that the test statistics are asymptotically normal under the null hypothesis and a sequence of Pitman local alternatives. We also show that the tests possess an asymptotic optimality property in terms of average power. Simulations suggest that the tests are well behaved in finite samples. Applications to some economic and financial time series indicate that our tests reveal some interesting nonlinear causal relations which the traditional linear Granger causality test fails to detect.  相似文献   

12.
We discuss how to test the specification of an ordered discrete choice model against a general alternative. Two main approaches can be followed: tests based on moment conditions and tests based on comparisons between parametric and nonparametric estimations. Following these approaches, various statistics are proposed and their asymptotic properties are discussed. The performance of the statistics is compared by means of simulations. An easy-to-compute variant of the standard moment-based statistic yields the best results in models with a single explanatory variable. In models with various explanatory variables the results are less conclusive, since the relative performance of the statistics depends on both the fit of the model and the type of misspecification that is considered.  相似文献   

13.
This article proposes omnibus specification tests of parametric dynamic quantile models. In contrast to the existing procedures, we allow for a flexible specification, where a possible continuum of quantiles is simultaneously specified under fairly weak conditions on the serial dependence in the underlying data-generating process. Since the null limit distribution of tests is not pivotal, we propose a subsampling approximation of the asymptotic critical values. A Monte Carlo study shows that the asymptotic results provide good approximations for small sample sizes. Finally, an application suggests that our methodology is a powerful alternative to standard backtesting procedures in evaluating market risk.  相似文献   

14.
In this paper we consider the problem of semiparametric efficient estimation in conditional quantile models with time series data. We construct an M-estimator which achieves the semiparametric efficiency bound recently derived by Komunjer and Vuong (forthcoming). Our efficient M-estimator is obtained by minimizing an objective function which depends on a nonparametric estimator of the conditional distribution of the variable of interest rather than its density. The estimator is new and not yet seen in the literature. We illustrate its performance through a Monte Carlo experiment.  相似文献   

15.
We propose a rank-test of the null hypothesis of short memory stationarity possibly after linear detrending.  相似文献   

16.
To study the influence of a bandwidth parameter in inference with conditional moments, we propose a new class of estimators and establish an asymptotic representation of our estimator as a process indexed by a bandwidth, which can vary within a wide range including bandwidths independent of the sample size. We study its behavior under misspecification. We also propose an efficient version of our estimator. We develop a procedure based on a distance metric statistic for testing restrictions on parameters as well as a bootstrap technique to account for the bandwidth’s influence. Our new methods are simple to implement, apply to non-smooth problems, and perform well in our simulations.  相似文献   

17.
We propose non-nested hypothesis tests for conditional moment restriction models based on the method of generalized empirical likelihood (GEL). By utilizing the implied GEL probabilities from a sequence of unconditional moment restrictions that contains equivalent information of the conditional moment restrictions, we construct Kolmogorov–Smirnov and Cramér–von Mises type moment encompassing tests. Advantages of our tests over Otsu and Whang’s (2011) tests are: (i) they are free from smoothing parameters, (ii) they can be applied to weakly dependent data, and (iii) they allow non-smooth moment functions. We derive the null distributions, validity of a bootstrap procedure, and local and global power properties of our tests. The simulation results show that our tests have reasonable size and power performance in finite samples.  相似文献   

18.
The generalised method of moments estimator may be substantially biased in finite samples, especially so when there are large numbers of unconditional moment conditions. This paper develops a class of first-order equivalent semi-parametric efficient estimators and tests for conditional moment restrictions models based on a local or kernel-weighted version of the Cressie–Read power divergence family of discrepancies. This approach is similar in spirit to the empirical likelihood methods of Kitamura et al. [2004. Empirical likelihood-based inference in conditional moment restrictions models. Econometrica 72, 1667–1714] and Tripathi and Kitamura [2003. Testing conditional moment restrictions. Annals of Statistics 31, 2059–2095]. These efficient local methods avoid the necessity of explicit estimation of the conditional Jacobian and variance matrices of the conditional moment restrictions and provide empirical conditional probabilities for the observations.  相似文献   

19.
This paper presents a general statistical framework for estimation, testing and comparison of asset pricing models using the unconstrained distance measure of Hansen and Jagannathan (1997). The limiting results cover both linear and nonlinear models that could be correctly specified or misspecified. We propose modified versions of the existing model selection tests and new pivotal specification and model comparison tests with improved finite-sample properties. In addition, we provide formal tests of multiple model comparison. The excellent size and power properties of the proposed tests are demonstrated using simulated data from linear and nonlinear asset pricing models.  相似文献   

20.
I develop an omnibus specification test for diffusion models based on the infinitesimal operator. The infinitesimal operator based identification of the diffusion process is equivalent to a “martingale hypothesis” for the processes obtained by a transformation of the original diffusion model. My test procedure is then constructed by checking the “martingale hypothesis” via a multivariate generalized spectral derivative based approach that delivers a N(0,1) asymptotical null distribution for the test statistic. The infinitesimal operator of the diffusion process is a closed-form function of drift and diffusion terms. Consequently, my test procedure covers both univariate and multivariate diffusion models in a unified framework and is particularly convenient for the multivariate case. Moreover, different transformed martingale processes contain separate information about the drift and diffusion specifications. This motivates me to propose a separate inferential test procedure to explore the sources of rejection when a parametric form is rejected. Simulation studies show that the proposed tests have reasonable size and excellent power performance. An empirical application of my test procedure using Eurodollar interest rates finds that most popular short-rate models are rejected and the drift misspecification plays an important role in such rejections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号