首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we shall propose a useful approach to evaluate concretely the MEMM (minimal entropy martingale measure) for the typical geometric Lévy processes such as compound Poisson, stable, VG (Variance Gamma), CGMY (Carr-Geman-Madan-Yor), NIG (Normal Inverse Gaussian), etc. In addition, we shall estimate the parameters of geometric Lévy processes and value the European call option and Asian call option using the Nikkei financial data.  相似文献   

2.
Option pricing under the Lévy process has been considered an important research direction in the field of financial engineering, where a closed-form expression for the standard European option is available due to the existence of analytically tractable characteristic function according to the Lévy–Khinchin representation. However, this approach cannot be applied to exotic derivatives (such as barrier options) directly, although a large volume of exotic derivatives are actively traded in the current options market. An alternative approach is to solve the corresponding partial integro-differential equation (PIDE) numerically, which is, in fact, time-consuming and is not computationally tractable in general. In this paper, we apply the so-called homotopy analysis method (HAM) to solve the corresponding PIDE in a semi analytic form, being obtained from the following three steps: (1) Apply the Fourier transform to convert the PIDE to an ordinal differential equitation (ODE), and construct a differential system of ODEs. (2) Solve the system of ODEs, where each differential equation is shown to have an analytical solution. (3) Express the option price using the sum of infinite series, where each term may be expressed analytically and derived by applying Steps (1) and (2) recursively. To illustrate our technique more precisely, we take the variance gamma model as an example and provide the semi-analytic form. Numerical examples demonstrate a fast convergence of our proposed method to the prices of European and down-and-out call options with a few number of terms. Note that this method is easy to implement and can be applied to other types of options under general Lévy processes.  相似文献   

3.
4.
This paper presents an approximate formula for pricing average options when the underlying asset price is driven by time-changed Lévy processes. Time-changed Lévy processes are attractive to use for a driving factor of underlying prices because the processes provide a flexible framework for generating jumps, capturing stochastic volatility as the random time change, and introducing the leverage effect. There have been very few studies dealing with pricing problems of exotic derivatives on time-changed Lévy processes in contrast to standard European derivatives. Our pricing formula is based on the Gram–Charlier expansion and the key of the formula is to find analytic treatments for computing the moments of the normalized average asset price. In numerical examples, we demonstrate that our formula give accurate values of average call options when adopting Heston’s stochastic volatility model, VG-CIR, and NIG-CIR models.  相似文献   

5.
We study the skewness premium (SK) introduced by Bates [J. Finance, 1991, 46(3), 1009–1044] in a general context using Lévy processes. Under a symmetry condition, Fajardo and Mordecki [Quant. Finance, 2006, 6(3), 219–227] obtained that SK is given by Bates' x% rule. In this paper, we study SK in the absence of that symmetry condition. More exactly, we derive sufficient conditions for the excess of SK to be positive or negative, in terms of the characteristic triplet of the Lévy process under a risk-neutral measure.  相似文献   

6.
We derive efficient and accurate analytical pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes. By extending the conditioning variable approach, we derive the lower bound on the Asian option price and construct an upper bound based on the sharp lower bound. We also consider the general partially exact and bounded (PEB) approximations, which include the sharp lower bound and partially conditional moment matching approximation as special cases. The PEB approximations are known to lie between a sharp lower bound and an upper bound. Our numerical tests show that the PEB approximations to discrete arithmetic Asian option prices can produce highly accurate approximations when compared to other approximation methods. Our proposed approximation methods can be readily applied to pricing Asian options under most common types of underlying asset price processes, like the Heston stochastic volatility model nested in the class of time-changed Lévy processes with the leverage effect.  相似文献   

7.
We survey the use and limitations of some numerical methods for pricing derivative contracts in multidimensional geometric Lévy models.   相似文献   

8.
We develop a switching regime version of the intensity model for credit risk pricing. The default event is specified by a Poisson process whose intensity is modeled by a switching Lévy process. This model presents several interesting features. First, as Lévy processes encompass numerous jump processes, our model can duplicate the sudden jumps observed in credit spreads. Also, due to the presence of jumps, probabilities do not vanish at very short maturities, contrary to models based on Brownian dynamics. Furthermore, as the parameters of the Lévy process are modulated by a hidden Markov chain, our approach is well suited to model changes of volatility trends in credit spreads, related to modifications of unobservable economic factors.  相似文献   

9.
The purpose of this paper is to introduce a stochastic volatility model for option pricing that exhibits Lévy jump behavior. For this model, we derive the general formula for a European call option. A well known particular case of this class of models is the Bates model, for which the jumps are modeled by a compound Poisson process with normally distributed jumps. Alternatively, we turn our attention to infinite activity jumps produced by a tempered stable process. Then we empirically compare the estimated log-return probability density and the option prices produced from this model to both the Bates model and the Black–Scholes model. We find that the tempered stable jumps describe more precisely market prices than compound Poisson jumps assumed in the Bates model.  相似文献   

10.
11.
This article presents a numerical method of pricing the surrender risk in Ratchet equity-index annuities (EIAs). We assume that log-returns of the underlying fund belong to a class of regime-switching models where the parameters are allowed to change randomly according to a hidden Markov chain. The defining feature of these models is the fact that in each regime the characteristic function of log-returns is assumed to have an analytical form. The presented method provides an unified pricing framework within this class and includes the recently developed COS method as a particular case. This aspect of the method is particularly useful when pricing Ratchet options embedded in EIAs, for which the COS method exhibits a low rate of convergence. Our numerical results confirm that for models considered in this article the proposed approach improves convergence of the COS method without increasing the computational burden.  相似文献   

12.
13.
In this paper, we discuss a stochastic volatility model with a Lévy driving process and then apply the model to option pricing and hedging. The stochastic volatility in our model is defined by the continuous Markov chain. The risk-neutral measure is obtained by applying the Esscher transform. The option price using this model is computed by the Fourier transform method. We obtain the closed-form solution for the hedge ratio by applying locally risk-minimizing hedging.  相似文献   

14.
In this work we propose a new and general approach to build dependence in multivariate Lévy processes. We fully characterize a multivariate Lévy process whose margins are able to approximate any Lévy type. Dependence is generated by one or more common sources of jump intensity separately in jumps of any sign and size and a parsimonious method to determine the intensities of these common factors is proposed. Such a new approach allows the calibration of any smooth transition between independence and a large amount of linear dependence and provides greater flexibility in calibrating nonlinear dependence than in other comparable Lévy models in the literature. The model is analytically tractable and a straightforward multivariate simulation procedure is available. An empirical analysis shows an accurate multivariate fit of stock returns in terms of linear and nonlinear dependence. A numerical illustration of multi-asset option pricing emphasizes the importance of the proposed new approach for modeling dependence.  相似文献   

15.
The idea of taxation in risk process was first introduced by Albrecher, H. & Hipp, C. Lundberg’s risk process with tax. Blätter der DGVFM 28(1), 13–28, who suggested that a certain proportion of the insurer’s income is paid immediately as tax whenever the surplus process is at its running maximum. In this paper, a spectrally negative Lévy insurance risk model under taxation is studied. Motivated by the concept of randomized observations proposed by Albrecher, H., Cheung, E.C.K. & Thonhauser, S. Randomized observation periods for the compound Poisson risk model: Dividends. ASTIN Bulletin 41(2), 645–672, we assume that the insurer’s surplus level is only observed at a sequence of Poisson arrival times, at which the event of ruin is checked and tax may be collected from the tax authority. In particular, if the observed (pre-tax) level exceeds the maximum of the previously observed (post-tax) values, then a fraction of the excess will be paid as tax. Analytic expressions for the Gerber–Shiu expected discounted penalty function and the expected discounted tax payments until ruin are derived. The Cramér-Lundberg asymptotic formula is shown to hold true for the Gerber–Shiu function, and it differs from the case without tax by a multiplicative constant. Delayed start of tax payments will be discussed as well. We also take a look at the case where solvency is monitored continuously (while tax is still paid at Poissonian time points), as many of the above results can be derived in a similar manner. Some numerical examples will be given at the end.  相似文献   

16.
We apply the multilevel Monte Carlo method for option pricing problems using exponential Lévy models with a uniform timestep discretisation. For lookback and barrier options, we derive estimates of the convergence rate of the error introduced by the discrete monitoring of the running supremum of a broad class of Lévy processes. We then use these to obtain upper bounds on the multilevel Monte Carlo variance convergence rate for the variance gamma, NIG and \(\alpha\)-stable processes. We also provide an analysis of a trapezoidal approximation for Asian options. Our method is illustrated by numerical experiments.  相似文献   

17.
We study the cause of large fluctuations in prices on the London Stock Exchange. This is done at the microscopic level of individual events, where an event is the placement or cancellation of an order to buy or sell. We show that price fluctuations caused by individual market orders are essentially independent of the volume of orders. Instead, large price fluctuations are driven by liquidity fluctuations, variations in the market's ability to absorb new orders. Even for the most liquid stocks there can be substantial gaps in the order book, corresponding to a block of adjacent price levels containing no quotes. When such a gap exists next to the best price, a new order can remove the best quote, triggering a large midpoint price change. Thus, the distribution of large price changes merely reflects the distribution of gaps in the limit order book. This is a finite size effect, caused by the granularity of order flow: in a market where participants place many small orders uniformly across prices, such large price fluctuations would not happen. We show that this also explains price fluctuations on longer timescales. In addition, we present results suggesting that the risk profile varies from stock to stock, and is not universal: lightly traded stocks tend to have more extreme risks.  相似文献   

18.
The challenge to fruitfully merge state-of-the-art techniques from mathematical finance and numerical analysis has inspired researchers to develop fast deterministic option pricing methods. As a result, highly efficient algorithms to compute option prices in Lévy models by solving partial integro-differential equations have been developed. In order to provide a solid mathematical foundation for these methods, we derive a Feynman–Kac representation of variational solutions to partial integro-differential equations that characterize conditional expectations of functionals of killed time-inhomogeneous Lévy processes. We allow a wide range of underlying stochastic processes, comprising processes with Brownian part as well as a broad class of pure jump processes such as generalized hyperbolic, multivariate normal inverse Gaussian, tempered stable, and \(\alpha\)-semistable Lévy processes. By virtue of our mild regularity assumptions as to the killing rate and the initial condition of the partial integro-differential equation, our results provide a rigorous basis for numerous applications in financial mathematics and in probability theory. We implement a Galerkin scheme to solve the corresponding pricing equation numerically and illustrate the effect of a killing rate.  相似文献   

19.
In this paper, we develop a multivariate risk-neutral Lévy process model and discuss its applicability in the context of the volatility smile of multiple assets. Our formulation is based upon a linear combination of independent univariate Lévy processes and can easily be calibrated to a set of one-dimensional marginal distributions and a given linear correlation matrix. We derive conditions for our formulation and the associated calibration procedure to be well-defined and provide some examples associated with particular Lévy processes permitting a closed-form characteristic function. Numerical results of the option premiums on three currencies are presented to illustrate the effectiveness of our formulation with different linear correlation structures.  相似文献   

20.
The goal of the paper is to show that some types of Lévy processes such as the hyperbolic motion and the CGMY are particularly suitable for asset price modelling and option pricing. We wish to review some fundamental mathematic properties of Lévy distributions, such as the one of infinite divisibility, and how they translate observed features of asset price returns. We explain how these processes are related to Brownian motion, the central process in finance, through stochastic time changes which can in turn be interpreted as a measure of the economic activity. Lastly, we focus on two particular classes of pure jump Lévy processes, the generalized hyperbolic model and the CGMY models, and report on the goodness of fit obtained both on stock prices and option prices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号