首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines a reliable capacitated location–routing problem in which depots are randomly disrupted. Customers whose depots fail must be reinserted into the routes of surviving depots. We present a scenario-based mixed-integer programming model to optimize depot location, outbound delivery routing, and backup plans. We design a metaheuristic algorithm that is based on a maximum-likelihood sampling method, route-reallocation improvement, two-stage neighborhood search and simulated annealing. Numerical tests show that the heuristic is able to generate results that would keep operating costs and failure costs well balanced. Managerial insights on scenario identification, facility deployment and model simplification are drawn.  相似文献   

2.
This paper studies a mixed truck delivery system that allows both hub-and-spoke and direct shipment delivery modes. A heuristic algorithm is developed to determine the mode of delivery for each demand and to perform vehicle routing in both modes of deliveries. Computational experiments are carried out on a large set of randomly generated problem instances to compare the mixed system with the pure hub-and-spoke system and the pure direct shipment system. The experiment results show that the mixed system can save around 10% total traveling distance on average as compared with either of the two pure systems.  相似文献   

3.
This article deals with the refueling-station location problem for alternative fuel vehicles in a traffic network. Alternative fuel vehicles can be characterized by the vehicle range that limits the travelable distance with fuel at full capacity. I propose an efficient formulation of the refueling-station location problem using an optimal property and prove that the problem is NP(Non-deterministic Polynomial)-complete in the strong sense. I consider a special case of the refueling-station location problem in which the construction costs are equal for all nodes. In this case, the problem is to determine refueling station locations to minimize the total number of stations, while making the possible multiple predetermined origin–destination round-trips. I propose an optimal algorithm applicable when no refueling stations currently exist in a traffic network and a dynamic programming based algorithm applicable when a set of refueling stations already exists. I apply the algorithms to a traffic network to study the diffusion of refueling stations and predict the speed and range of station establishment. The computational experiments show that the speed of diffusion depends on the vehicle range and the sequence of the origin–destination demands considered in the diffusion process.  相似文献   

4.
Given a set of scheduled flights that must be operated by the same aircraft type, the aircraft routing problem consists of building anonymous aircraft routes that respect maintenance requirements and cover each flight exactly once. This paper looks at the nature of the problem and introduces a classification according to three business processes that are used to assign the anonymous routes to the specific aircraft tail numbers. Furthermore, we compare the aircraft routing problem variants resulting from these three processes with regard to their adaptability to different contexts, the difficulty of solving them, the cost of the computed solutions, and the robustness of these solutions.  相似文献   

5.
This paper addresses an integrated model that schedules multi-item replenishment with uncertain demand to determine delivery routes and truck loads, where the actual replenishment quantity only becomes known upon arrival at a demand location. This paper departs from the conventional ant colony optimization (ACO) algorithm, which minimizes total travel length, and incorporates the attraction of pheromone values that indicate the stockout costs on nodes. The contributions of the paper to the literature are made both in terms of modeling this combined multi-item inventory management with the vehicle-routing problem and in introducing a modified ACO for the inventory routing problem.  相似文献   

6.
One of the most important airline's products is to determine the aircraft routing and scheduling and fleet assignment. The key input data of this problem is the traffic forecasting and allocation that forecasts traffic on each flight leg. The complexity of this problem is to define the connecting flights when passengers should change the aircraft to reach the final destination. Moreover, as there exists various types of uncertainties during the flights, finding a solution which is able to absorb these uncertainties is invaluable. In this paper, a new robust mixed integer mathematical model for the integrated aircraft routing and scheduling, with consideration of fleet assignment problem is proposed. Then to find good solutions for large-scale problems in a rational amount of time, a heuristic algorithm based on the Simulated Annealing (SA) is introduced. In addition, some examples are randomly generated and the proposed heuristic algorithm is validated by comparing the results with the optimum solutions. The effects of robust vs non-robust solutions are examined, and finally, a hybrid algorithm is generated which results in more effective solution in comparison with SA, and Particle Swarm Optimization (PSO).  相似文献   

7.
This paper introduces the vehicle routing problem with soft time windows (VRPSTW) in which problem definition differs from ones previously defined in literature. Branch-and-price approach is employed, resulting in a set partitioning master problem and its new subproblem. Novel techniques are consequently developed to solve this new subproblem. Experimental results report the comparisons of these solution techniques under the branch-and-price framework. The VRPSTW solutions have further been compared to the state-of-the-art literature, signifying the superiority of the VRPSTW on this issue.  相似文献   

8.
This paper proposes a new approach to designing inbound material collection routes that considers pick-up frequency and spatial design as joint decisions to minimize total logistics (transportation plus inventory) cost. The clustering-based optimization uses an approximation to the actual cost of a routing solution without actual route construction. We show that the problem is analogous to a single-source fixed-charge facility location problem, and near-optimal solutions can be found using an efficient heuristic algorithm. Tests show the effectiveness of how this model is formulated and a case study demonstrates that substantial total cost savings can be achieved in realistic applications.  相似文献   

9.
The heterogeneous vehicle routing problem (HVRP) plays an important role in supply chain logistics. Two variants of HVRP are treated in this paper: one with fixed and variable costs (HVRPFD), and the other with only variable cost (HVRPD). A hybrid population heuristic that is able to solve both variants is proposed, in which a population of solutions are progressively evolved by crossovers and local searches. Computational results on a set of eight benchmark test problems from literature show that the proposed heuristic produces excellent solutions in short computing times.  相似文献   

10.
This paper for the first time presents a novel model to simultaneously optimize location, allocation, capacity, inventory, and routing decisions in a stochastic supply chain system. Each customer’s demand is uncertain and follows a normal distribution, and each distribution center maintains a certain amount of safety stock. To solve the model, first we present an exact solution method by casting the problem as a mixed integer convex program, and then we establish a heuristic method based on a hybridization of Tabu Search and Simulated Annealing. The results show that the proposed heuristic is considerably efficient and effective for a broad range of problem sizes.  相似文献   

11.
A driver who drives an alternative-fuel vehicle (AFV) from an origin point to a destination point needs to consider how to get there (i.e., the routing problem), when to stop, and how and when to refuel (i.e., the refueling plan). In this study, models and algorithms are proposed that optimize a one-way-trip path such that the total travel time from the origin to the destination is minimized. The travel time consists of the setup time, the refueling time and the driving time. The setup time includes waiting for the AFV to be served at a refueling station and the preparation time of charging the machine. We categorized the problems into two types: (1) the refueling plan problem when the routing decision is given and (2) an integrated problem of routing and refueling. Another axis of categorization is when (1) setup time and refueling times are site-independent and (2) parameters are site-dependent. We propose optimal algorithms for site-independent problems and the integrated problem of routing and refueling planning with site-independent parameters. We also conduct experiments and sensitivity analyses for the site-dependent integrated problems of routing and refueling.  相似文献   

12.
Every day, a blood center must determine a set of locations among a group of potential sites to route their vehicles for blood collection so as to avoid shortfalls. In this study, a vehicle routing problem is modeled using an integer programming approach to simultaneously identify number of bloodmobiles to operate and minimize the distance travelled. Additionally, the model is extended to incorporate uncertainty in blood potentials and variable durations in bloodmobile visits. Optimal routings are determined using CPLEX solver and branch-and-price algorithm. Results show that proposed algorithm solve the problem to optimality up to 30 locations within 3600 s.  相似文献   

13.
In this paper, an open capacitated arc routing problem (OCARP) is defined and considered. The OCARP seeks to find a set of minimum-cost open routes that can serve the tasks (i.e., required arcs) of a given graph, subject to the vehicle capacity and travel distance. A mathematical programming formulation and a lower bound are established. An effective memetic algorithm is developed for solving the OCARP. Computational experiments demonstrate that the proposed algorithm can produce high quality solutions within a reasonable computational time span, and the proposed memetic algorithm is superior to the classical genetic algorithm in solution quality.  相似文献   

14.
This paper studies the location–allocation–configuration problem of emergency resources in a maritime emergency system and it proposes a discrete nonlinear integer-programming model, which integrates the location, allocation and the configuration problem. The model is converted into a two-stage model keeping the calculation logic. It designs a hybrid heuristic algorithm and a genetic algorithm. The test results show that the hybrid heuristic algorithm is more efficient than the genetic algorithm, the sensitivity analysis studies the influence of some parameters to the final solution and the Uncertainty–Sensitivity justification tool is used to evaluate the assumptions.  相似文献   

15.
This paper discusses the logistics network design for end-of-lease computer products recovery by developing a deterministic programming model for systematically managing forward and reverse logistics flows. Due to the complexity of such network design problem, a two-stage heuristic approach is developed to decompose the integrated design of the distribution networks into a location–allocation problem and a revised network flow problem. The applicability of the proposed method is illustrated in a numerical study. Computational experiments demonstrate that high-quality solutions are obtained while modest computational overheads are incurred.  相似文献   

16.
This problem involves optimizing product collection and redistribution from production locations to a set of processing plants over a planning horizon. This horizon consists of several days, and the collection-redistribution is performed on a repeating daily basis. A single routing plan must be prepared for the whole horizon, taking into account the seasonal variations in the supply. We model the problem using a sequence of periods, each corresponding to a season. We propose an adaptive large-neighborhood search with several specifically designed operators and features. The results show the excellent performance of the algorithm in terms of solution quality and computational efficiency.  相似文献   

17.
This paper studies optimization methods for a routing problem encountered in daily maintenance operations of a road network. Stochastic service and travel times on road segments are considered. The problem is formulated as a variation of the capacitated arc routing problem (CARP). A chance-constrained programming model is firstly developed and solved by a branch-and-cut algorithm. A stochastic programming model with recourse is also proposed to take into account the recourse costs in case of route failure. The problem is solved by an adaptive large neighborhood search algorithm. The computational experiments demonstrate the effectiveness of the algorithm.  相似文献   

18.
In integrated operational transportation planning (IOTP) problems, the traditional vehicle routing problem is extended by using external resources for the fulfillment of transportation requests. IOTP is getting more complex when the choice of the fulfillment mode is limited for some requests. In this paper, an existing column generation-based heuristic for IOTP is extended by two strategies for handling forwarding limitations. The computational experiments indicate that one of the extended versions of the heuristic outperforms all previous approaches in literature. Further on, the impact of forwarding limitations on different location structures and on the size of the private fleet is analyzed.  相似文献   

19.
This paper studies the fleet size and mix vehicle routing problem (FSMVRP), in which the fleet is heterogeneous and its composition to be determined. We design and implement a genetic algorithm (GA) based heuristic. On a set of twenty benchmark problems it reaches the best-known solution 14 times and finds one new best solution. It also provides a competitive performance in terms of average solution.  相似文献   

20.
In the vehicle routing problem, a fleet of vehicles must service the demands of customers in a least-cost way. By allowing multiple vehicles to service the same customer (i.e., splitting deliveries), substantial savings in travel costs are possible. However, split deliveries are often an inconvenience to the customer who would prefer to have demand serviced in a single visit. We consider the vehicle routing problem in which split deliveries are allowed only if a minimum fraction of a customer’s demand is serviced by a vehicle. We develop a heuristic method for solving this problem and report computational results on a wide range of problem sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号