共查询到20条相似文献,搜索用时 0 毫秒
1.
Stéphane Crépey 《Mathematical Finance》2015,25(1):23-50
The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so‐called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced‐form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations. 相似文献
2.
We develop a framework for computing the total valuation adjustment (XVA) of a European claim accounting for funding costs, counterparty credit risk, and collateralization. Based on no‐arbitrage arguments, we derive backward stochastic differential equations associated with the replicating portfolios of long and short positions in the claim. This leads to the definition of buyer's and seller's XVA, which in turn identify a no‐arbitrage interval. In the case that borrowing and lending rates coincide, we provide a fully explicit expression for the unique XVA, expressed as a percentage of the price of the traded claim, and for the corresponding replication strategies. In the general case of asymmetric funding, repo, and collateral rates, we study the semilinear partial differential equations characterizing buyer's and seller's XVA and show the existence of a unique classical solution to it. To illustrate our results, we conduct a numerical study demonstrating how funding costs, repo rates, and counterparty risk contribute to determine the total valuation adjustment. 相似文献
3.
We introduce an arbitrage‐free framework for robust valuation adjustments. An investor trades a credit default swap portfolio with a risky counterparty, and hedges credit risk by taking a position in defaultable bonds. The investor does not know the exact return rate of her counterparty's bond, but she knows it lies within an uncertainty interval. We derive both upper and lower bounds for the XVA process of the portfolio, and show that these bounds may be recovered as solutions of nonlinear ordinary differential equations. The presence of collateralization and closeout payoffs leads to important differences with respect to classical credit risk valuation. The value of the super‐replicating portfolio cannot be directly obtained by plugging one of the extremes of the uncertainty interval in the valuation equation, but rather depends on the relation between the XVA replicating portfolio and the closeout value throughout the life of the transaction. Our comparative statics analysis indicates that credit contagion has a nonlinear effect on the replication strategies and on the XVA. 相似文献
4.
Bielecki and Rutkowski introduced and studied a generic nonlinear market model, which includes several risky assets, multiple funding accounts, and margin accounts. In this paper, we examine the pricing and hedging of contract from the perspective of both the hedger and the counterparty with arbitrary initial endowments. We derive inequalities for unilateral prices and we study the range of fair bilateral prices. We also examine the positive homogeneity and monotonicity of unilateral prices with respect to the initial endowments. Our study hinges on results from Nie and Rutkowski for backward stochastic differential equations (BSDEs) driven by continuous martingales, but we also derive the pricing partial differential equations (PDEs) for path‐independent contingent claims of a European style in a Markovian framework. 相似文献
5.
WIENER CHAOS: A NEW APPROACH TO OPTION HEDGING 总被引:1,自引:0,他引:1
Vincent Lacoste 《Mathematical Finance》1996,6(2):197-213
This paper addresses the problem of estimating and analyzing the residual risk that is not hedged by a discrete hedging strategy. the use of die chaotic representation allows an elegant decomposition of the residual risk to be hedged by adequate assets. Alternative strategies to the classical delta hedging and optimization under the risk-neutral and historical probabilities are discussed. 相似文献
6.
The left tail of the implied volatility skew, coming from quotes on out‐of‐the‐money put options, can be thought to reflect the market's assessment of the risk of a huge drop in stock prices. We analyze how this market information can be integrated into the theoretical framework of convex monetary measures of risk. In particular, we make use of indifference pricing by dynamic convex risk measures, which are given as solutions of backward stochastic differential equations, to establish a link between these two approaches to risk measurement. We derive a characterization of the implied volatility in terms of the solution of a nonlinear partial differential equation and provide a small time‐to‐maturity expansion and numerical solutions. This procedure allows to choose convex risk measures in a conveniently parameterized class, distorted entropic dynamic risk measures, which we introduce here, such that the asymptotic volatility skew under indifference pricing can be matched with the market skew. We demonstrate this in a calibration exercise to market implied volatility data. 相似文献
7.
This paper introduces a dual problem to study a continuous‐time consumption and investment problem with incomplete markets and Epstein–Zin stochastic differential utilities. Duality between the primal and dual problems is established. Consequently, the optimal strategy of this consumption and investment problem is identified without assuming several technical conditions on market models, utility specifications, and agent's admissible strategies. Meanwhile, the minimizer of the dual problem is identified as the utility gradient of the primal value and is economically interpreted as the “least favorable” completion of the market. 相似文献
8.
This paper is concerned with the study of insurance related derivatives on financial markets that are based on nontradable underlyings, but are correlated with tradable assets. We calculate exponential utility‐based indifference prices, and corresponding derivative hedges. We use the fact that they can be represented in terms of solutions of forward‐backward stochastic differential equations (FBSDE) with quadratic growth generators. We derive the Markov property of such FBSDE and generalize results on the differentiability relative to the initial value of their forward components. In this case the optimal hedge can be represented by the price gradient multiplied with the correlation coefficient. This way we obtain a generalization of the classical “delta hedge” in complete markets. 相似文献
9.
Brendan K. Beare 《Mathematical Finance》2023,33(2):370-388
This article clarifies the relationship between pricing kernel monotonicity and the existence of opportunities for stochastic arbitrage in a complete and frictionless market of derivative securities written on a market portfolio. The relationship depends on whether the payoff distribution of the market portfolio satisfies a technical condition called adequacy, meaning that it is atomless or is comprised of finitely many equally probable atoms. Under adequacy, pricing kernel nonmonotonicity is equivalent to the existence of a strong form of stochastic arbitrage involving distributional replication of the market portfolio at a lower price. If the adequacy condition is dropped then this equivalence no longer holds, but pricing kernel nonmonotonicity remains equivalent to the existence of a weaker form of stochastic arbitrage involving second-order stochastic dominance of the market portfolio at a lower price. A generalization of the optimal measure preserving derivative is obtained, which achieves distributional replication at the minimum cost of all second-order stochastically dominant securities under adequacy. 相似文献
10.
Yuhong Xu 《Mathematical Finance》2016,26(3):638-673
This paper deals with multidimensional dynamic risk measures induced by conditional g‐expectations. A notion of multidimensional g‐expectation is proposed to provide a multidimensional version of nonlinear expectations. By a technical result on explicit expressions for the comparison theorem, uniqueness theorem, and viability on a rectangle of solutions to multidimensional backward stochastic differential equations, some necessary and sufficient conditions are given for the constancy, monotonicity, positivity, and translatability properties of multidimensional conditional g‐expectations and multidimensional dynamic risk measures; we prove that a multidimensional dynamic g‐risk measure is nonincreasingly convex if and only if the generator g satisfies a quasi‐monotone increasingly convex condition. A general dual representation is given for the multidimensional dynamic convex g‐risk measure in which the penalty term is expressed more precisely. It is shown that model uncertainty leads to the convexity of risk measures. As to applications, we show how this multidimensional approach can be applied to measure the insolvency risk of a firm with interacting subsidiaries; optimal risk sharing for ‐tolerant g‐risk measures, and risk contribution for coherent g‐risk measures are investigated. Insurance g‐risk measure and other ways to induce g‐risk measures are also studied at the end of the paper. 相似文献
11.
An investor with constant absolute risk aversion trades a risky asset with general Itô‐dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading‐order optimal trading policy and the associated welfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs. 相似文献
12.
Xingchun Wang 《期货市场杂志》2020,40(3):410-429
In this paper, we consider Asian options with counterparty risk under stochastic volatility models. We propose a simple way to construct stochastic volatility models through the market factor channel. In the proposed framework, we obtain an explicit pricing formula of Asian options with counterparty risk and illustrate the effects of systematic risk on Asian option prices. Specially, the U-shaped and inverted U-shaped curves appear when we keep the total risk of the underlying asset and the issuer's assets unchanged, respectively. 相似文献
13.
Robustness of the Black and Scholes Formula 总被引:6,自引:0,他引:6
Consider an option on a stock whose volatility is unknown and stochastic. An agent assumes this volatility to be a specific function of time and the stock price, knowing that this assumption may result in a misspecification of the volatility. However, if the misspecified volatility dominates the true volatility, then the misspecified price of the option dominates its true price. Moreover, the option hedging strategy computed under the assumption of the misspecified volatility provides an almost sure one-sided hedge for the option under the true volatility. Analogous results hold if the true volatility dominates the misspecified volatility. These comparisons can fail, however, if the misspecified volatility is not assumed to be a function of time and the stock price. The positive results, which apply to both European and American options, are used to obtain a bound and hedge for Asian options. 相似文献
14.
ARBITRAGE IN SECURITIES MARKETS WITH SHORT-SALES CONSTRAINTS 总被引:7,自引:0,他引:7
In this paper we derive the implications of the absence of arbitrage in securities markets models where traded securities are subject to short-sales constraints and where the borrowing and lending rates differ. We show that a securities price system is arbitrage free if and only if there exists a numeraire and an equivalent probability measure for which the normalized (by the numeraire) price processes of traded securities are supermartingales. Also, the tightest arbitrage bounds that can be inferred on the price of a contingent claim without knowing agents'preferences are equal to its largest and smallest expected normalized payoff with respect to the supermartingale measures. In the case where the underlying security price follows a diffusion process and where short selling is possible but costly, we derive partial differential equations that must be satisfied by the arbitrage bounds on derivative securities prices, and we determine optimal hedging strategies. We compute the arbitrage bounds on common securities numerically for several values of the borrowing and short-selling costs and show that they can be quite sharp. 相似文献
15.
We develop an option pricing model based on a tug‐of‐war game. This two‐player zero‐sum stochastic differential game is formulated in the context of a multidimensional financial market. The issuer and the holder try to manipulate asset price processes in order to minimize and maximize the expected discounted reward. We prove that the game has a value and that the value function is the unique viscosity solution to a terminal value problem for a parabolic partial differential equation involving the nonlinear and completely degenerate infinity Laplace operator. 相似文献
16.
We study the risk indifference pricing principle in incomplete markets: The (seller's) risk indifference price is the initial payment that makes the risk involved for the seller of a contract equal to the risk involved if the contract is not sold, with no initial payment. We use stochastic control theory and PDE methods to find a formula for and similarly for . In particular, we prove that where p low and p up are the lower and upper hedging prices, respectively. 相似文献
17.
Backward Stochastic Differential Equations in Finance 总被引:28,自引:0,他引:28
We are concerned with different properties of backward stochastic differential equations and their applications to finance. These equations, first introduced by Pardoux and Peng (1990), are useful for the theory of contingent claim valuation, especially cases with constraints and for the theory of recursive utilities, introduced by Duffie and Epstein (1992a, 1992b). 相似文献
18.
We study optimal hedging of barrier options, using a combination of a static position in vanilla options and dynamic trading of the underlying asset. The problem reduces to computing the Fenchel–Legendre transform of the utility-indifference price as a function of the number of vanilla options used to hedge. Using the well-known duality between exponential utility and relative entropy, we provide a new characterization of the indifference price in terms of the minimal entropy measure, and give conditions guaranteeing differentiability and strict convexity in the hedging quantity, and hence a unique solution to the hedging problem. We discuss computational approaches within the context of Markovian stochastic volatility models. 相似文献
19.
A new class of risk measures called cash subadditive risk measures is introduced to assess the risk of future financial, nonfinancial, and insurance positions. The debated cash additive axiom is relaxed into the cash subadditive axiom to preserve the original difference between the numéraire of the current reserve amounts and future positions. Consequently, cash subadditive risk measures can model stochastic and/or ambiguous interest rates or defaultable contingent claims. Practical examples are presented, and in such contexts cash additive risk measures cannot be used. Several representations of the cash subadditive risk measures are provided. The new risk measures are characterized by penalty functions defined on a set of sublinear probability measures and can be represented using penalty functions associated with cash additive risk measures defined on some extended spaces. The issue of the optimal risk transfer is studied in the new framework using inf-convolution techniques. Examples of dynamic cash subadditive risk measures are provided via BSDEs where the generator can locally depend on the level of the cash subadditive risk measure. 相似文献
20.
The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time 总被引:5,自引:0,他引:5
We prove a version of the Fundamental Theorem of Asset Pricing, which applies to Kabanov's modeling of foreign exchange markets under transaction costs. The financial market is described by a d × d matrix-valued stochastic process (Π t ) T t =0 specifying the mutual bid and ask prices between d assets. We introduce the notion of "robust no arbitrage," which is a version of the no-arbitrage concept, robust with respect to small changes of the bid-ask spreads of (Π t ) T t =0 . The main theorem states that the bid-ask process (Π t ) T t =0 satisfies the robust no-arbitrage condition iff it admits a strictly consistent pricing system. This result extends the theorems of Harrison-Pliska and Kabanov-Stricker pertaining to the case of finite Ω, as well as the theorem of Dalang, Morton, and Willinger and Kabanov, Rásonyi, and Stricker, pertaining to the case of general Ω. An example of a 5 × 5 -dimensional process (Π t )2 t =0 shows that, in this theorem, the robust no-arbitrage condition cannot be replaced by the so-called strict no-arbitrage condition, thus answering negatively a question raised by Kabanov, Rásonyi, and Stricker. 相似文献