首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the cause of large fluctuations in prices on the London Stock Exchange. This is done at the microscopic level of individual events, where an event is the placement or cancellation of an order to buy or sell. We show that price fluctuations caused by individual market orders are essentially independent of the volume of orders. Instead, large price fluctuations are driven by liquidity fluctuations, variations in the market's ability to absorb new orders. Even for the most liquid stocks there can be substantial gaps in the order book, corresponding to a block of adjacent price levels containing no quotes. When such a gap exists next to the best price, a new order can remove the best quote, triggering a large midpoint price change. Thus, the distribution of large price changes merely reflects the distribution of gaps in the limit order book. This is a finite size effect, caused by the granularity of order flow: in a market where participants place many small orders uniformly across prices, such large price fluctuations would not happen. We show that this also explains price fluctuations on longer timescales. In addition, we present results suggesting that the risk profile varies from stock to stock, and is not universal: lightly traded stocks tend to have more extreme risks.  相似文献   

2.
The purpose of this paper is to introduce a stochastic volatility model for option pricing that exhibits Lévy jump behavior. For this model, we derive the general formula for a European call option. A well known particular case of this class of models is the Bates model, for which the jumps are modeled by a compound Poisson process with normally distributed jumps. Alternatively, we turn our attention to infinite activity jumps produced by a tempered stable process. Then we empirically compare the estimated log-return probability density and the option prices produced from this model to both the Bates model and the Black–Scholes model. We find that the tempered stable jumps describe more precisely market prices than compound Poisson jumps assumed in the Bates model.  相似文献   

3.
4.
In this paper, we discuss a stochastic volatility model with a Lévy driving process and then apply the model to option pricing and hedging. The stochastic volatility in our model is defined by the continuous Markov chain. The risk-neutral measure is obtained by applying the Esscher transform. The option price using this model is computed by the Fourier transform method. We obtain the closed-form solution for the hedge ratio by applying locally risk-minimizing hedging.  相似文献   

5.
The implied volatility skew has received relatively little attention in the literature on short-term asymptotics for financial models with jumps, despite its importance in model selection and calibration. We rectify this by providing high order asymptotic expansions for the at-the-money implied volatility skew, under a rich class of stochastic volatility models with independent stable-like jumps of infinite variation. The case of a pure-jump stable-like Lévy model is also considered under the minimal possible conditions for the resulting expansion to be well defined. Unlike recent results for “near-the-money” option prices and implied volatility, the results herein aid in understanding how the implied volatility smile near expiry is affected by important features of the continuous component, such as the leverage and vol-of-vol parameters. As intermediary results, we obtain high order expansions for at-the-money digital call option prices, which furthermore allow us to infer analogous results for the delta of at-the-money options. Simulation results indicate that our asymptotic expansions give good fits for options with maturities up to one month, underpinning their relevance in practical applications, and an analysis of the implied volatility skew in recent S&P 500 options data shows it to be consistent with the infinite variation jump component of our models.  相似文献   

6.
In this paper we propose a general derivative pricing framework that employs decoupled time-changed (DTC) Lévy processes to model the underlying assets of contingent claims. A DTC Lévy process is a generalized time-changed Lévy process whose continuous and pure jump parts are allowed to follow separate random time scalings; we devise the martingale structure for a DTC Lévy-driven asset and revisit many popular models which fall under this framework. Postulating different time changes for the underlying Lévy decomposition allows the introduction of asset price models consistent with the assumption of a correlated pair of continuous and jump market activity rates; we study one illustrative DTC model of this kind based on the so-called Wishart process. The theory we develop is applied to the problem of pricing not only claims that depend on the price or the volatility of an underlying asset, but also more sophisticated derivatives whose payoffs rely on the joint performance of these two financial variables, such as the target volatility option. We solve the pricing problem through a Fourier-inversion method. Numerical analyses validating our techniques are provided. In particular, we present some evidence that correlating the activity rates could be beneficial for modeling the volatility skew dynamics.  相似文献   

7.
We survey the use and limitations of some numerical methods for pricing derivative contracts in multidimensional geometric Lévy models.   相似文献   

8.
We study the skewness premium (SK) introduced by Bates [J. Finance, 1991, 46(3), 1009–1044] in a general context using Lévy processes. Under a symmetry condition, Fajardo and Mordecki [Quant. Finance, 2006, 6(3), 219–227] obtained that SK is given by Bates' x% rule. In this paper, we study SK in the absence of that symmetry condition. More exactly, we derive sufficient conditions for the excess of SK to be positive or negative, in terms of the characteristic triplet of the Lévy process under a risk-neutral measure.  相似文献   

9.
10.
Volatility clustering and leverage are two of the most prominent stylized features of the dynamics of asset prices. In order to incorporate these features as well as the typical fat-tails of the log return distributions, several types of exponential Lévy models driven by random clocks have been proposed in the literature. These models constitute a viable alternative to the classical stochastic volatility approach based on SDEs driven by Wiener processes. This paper has two main objectives. First, using threshold type estimators based on high-frequency discrete observations of the process, we consider the recovery problem of the underlying random clock of the process. We show consistency of our estimator in the mean-square sense, extending former results in the literature for more general Lévy processes and for irregular sampling schemes. Secondly, we illustrate empirically the estimation of the random clock, the Blumenthal-Geetor index of jump activity, and the spectral Lévy measure of the process using real intraday high-frequency data.  相似文献   

11.
One method to compute the price of an arithmetic Asian option in a Lévy driven model is based on an exponential functional of the underlying Lévy process: If we know the distribution of the exponential functional, we can calculate the price of the Asian option via the inverse Laplace transform. In this paper, we consider pricing Asian options in a model driven by a general meromorphic Lévy process. We prove that the exponential functional is equal in distribution to an infinite product of independent beta random variables, and its Mellin transform can be expressed as an infinite product of gamma functions. We show that these results lead to an efficient algorithm for computing the price of the Asian option via the inverse Mellin–Laplace transform, and we compare this method with some other techniques.  相似文献   

12.
We prove that a multiple of a log contract prices a variance swap, under arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation with the driving Lévy process, subject to integrability conditions. We solve for the multiplier, which depends only on the Lévy process, not on the clock. In the case of an arbitrary continuous underlying returns process, the multiplier is 2, which recovers the standard no-jump variance swap pricing formula. In the presence of negatively skewed jump risk, however, we prove that the multiplier exceeds 2, which agrees with calibrations of time-changed Lévy processes to equity options data. Moreover, we show that discrete sampling increases variance swap values, under an independence condition; so if the commonly quoted multiple 2 undervalues the continuously sampled variance, then it undervalues even more the discretely sampled variance. Our valuations admit enforcement, in some cases, by hedging strategies which perfectly replicate variance swaps by holding log contracts and trading the underlying.  相似文献   

13.
In this paper we propose a transform method to compute the prices and Greeks of barrier options driven by a class of Lévy processes. We derive analytical expressions for the Laplace transforms in time of the prices and sensitivities of single barrier options in an exponential Lévy model with hyper-exponential jumps. Inversion of these single Laplace transforms yields rapid, accurate results. These results are employed to construct an approximation of the prices and sensitivities of barrier options in exponential generalized hyper-exponential Lévy models. The latter class includes many of the Lévy models employed in quantitative finance such as the variance gamma (VG), KoBoL, generalized hyperbolic, and the normal inverse Gaussian (NIG) models. Convergence of the approximating prices and sensitivities is proved. To provide a numerical illustration, this transform approach is compared with Monte Carlo simulation in cases where the driving process is a VG and a NIG Lévy process. Parameters are calibrated to Stoxx50E call options.  相似文献   

14.
This paper presents an approximate formula for pricing average options when the underlying asset price is driven by time-changed Lévy processes. Time-changed Lévy processes are attractive to use for a driving factor of underlying prices because the processes provide a flexible framework for generating jumps, capturing stochastic volatility as the random time change, and introducing the leverage effect. There have been very few studies dealing with pricing problems of exotic derivatives on time-changed Lévy processes in contrast to standard European derivatives. Our pricing formula is based on the Gram–Charlier expansion and the key of the formula is to find analytic treatments for computing the moments of the normalized average asset price. In numerical examples, we demonstrate that our formula give accurate values of average call options when adopting Heston’s stochastic volatility model, VG-CIR, and NIG-CIR models.  相似文献   

15.
In this work we propose a new and general approach to build dependence in multivariate Lévy processes. We fully characterize a multivariate Lévy process whose margins are able to approximate any Lévy type. Dependence is generated by one or more common sources of jump intensity separately in jumps of any sign and size and a parsimonious method to determine the intensities of these common factors is proposed. Such a new approach allows the calibration of any smooth transition between independence and a large amount of linear dependence and provides greater flexibility in calibrating nonlinear dependence than in other comparable Lévy models in the literature. The model is analytically tractable and a straightforward multivariate simulation procedure is available. An empirical analysis shows an accurate multivariate fit of stock returns in terms of linear and nonlinear dependence. A numerical illustration of multi-asset option pricing emphasizes the importance of the proposed new approach for modeling dependence.  相似文献   

16.
The goal of the paper is to show that some types of Lévy processes such as the hyperbolic motion and the CGMY are particularly suitable for asset price modelling and option pricing. We wish to review some fundamental mathematic properties of Lévy distributions, such as the one of infinite divisibility, and how they translate observed features of asset price returns. We explain how these processes are related to Brownian motion, the central process in finance, through stochastic time changes which can in turn be interpreted as a measure of the economic activity. Lastly, we focus on two particular classes of pure jump Lévy processes, the generalized hyperbolic model and the CGMY models, and report on the goodness of fit obtained both on stock prices and option prices.  相似文献   

17.
In this paper we present new pricing formulas for some Barrier style contracts of European type when the underlying process is driven by an important class of Lévy processes, which includes CGMY model, generalized hyperbolic Model and Meixner Model, when no symmetry properties are assumed, complementing in this way previous findings in Fajardo (J Bank Financ 53:179–187, 2015). Also, we show how to implement our new formulas.  相似文献   

18.
Adopting a constant elasticity of variance formulation in the context of a general Lévy process as the driving uncertainty we show that the presence of the leverage effect? ?One explanation of the documented negative relation between market volatilities and the level of asset prices (the ‘smile’ or ‘skew’), we term the ‘leverage effect’, argues that this negative relation reflects greater risk taking by the management, induced by a fall in the asset price, with a view of maximizing the option value of equity shareholders. in this form has the implication that asset price processes satisfy a scaling hypothesis. We develop forward partial integro-differential equations under a general Markovian setup, and show in two examples (both continuous and pure-jump Lévy) how to use them for option pricing when stock prices follow our leveraged Lévy processes. Using calibrated models we then show an example of simulation-based pricing and report on the adequacy of using leveraged Lévy models to value equity structured products.  相似文献   

19.
For d-dimensional exponential Lévy models, variational formulations of the Kolmogorov equations arising in asset pricing are derived. Well-posedness of these equations is verified. Particular attention is paid to pure jump, d-variate Lévy processes built from parametric, copula dependence models in their jump structure. The domains of the associated Dirichlet forms are shown to be certain anisotropic Sobolev spaces. Singularity-free representations of the Dirichlet forms are given which remain bounded for piecewise polynomial, continuous functions of finite element type. We prove that the variational problem can be localized to a bounded domain with explicit localization error bounds. Furthermore, we collect several analytical tools for further numerical analysis.  相似文献   

20.
In this paper, we propose a multivariate asset model based on Lévy processes for pricing of products written on more than one underlying asset. Our construction is based on a two-factor representation of the dynamics of the asset log-returns. We investigate the properties of the model and introduce a multivariate generalization of some processes which are quite common in financial applications, such as subordinated Brownian motions, jump-diffusion processes and time-changed Lévy processes. Finally, we explore the issue of model calibration for the proposed setting and illustrate its robustness on a number of numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号