共查询到20条相似文献,搜索用时 15 毫秒
1.
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. 相似文献
2.
This paper studies the estimation and testing of Euler equation models in the framework of the classical two-step minimum-distance method. The time-varying reduced-form model in the first step reflects the adaptation of private agents’ beliefs to the changing economic environment. The presumed ability of Euler conditions to deliver stable parameters indexing tastes and technology is interpreted as a time-invariant second-step model. This paper shows that, complementary to and independent of one another, both standard specification test and stability test are required for the evaluation of an Euler equation. As an empirical application, a widely used investment Euler equation is submitted to examination. The empirical outcomes appear to suggest that the standard investment model has not been a success for aggregate investment. 相似文献
3.
In this paper we develop a simple test procedure for a linear trend which does not require knowledge of the form of serial correlation in the data, is robust to strong serial correlation, and has a standard normal limiting null distribution under either I(0) or I(1) shocks. In contrast to other available robust linear trend tests, our proposed test achieves the Gaussian asymptotic local power envelope in both the I(0) and I(1) cases. For near-I(1) errors our proposed procedure is conservative and a modification for this situation is suggested. An estimator of the trend parameter, together with an associated confidence interval, which is asymptotically efficient, again regardless of whether the shocks are I(0) or I(1), is also provided. 相似文献
4.
We propose a test for the slope of a trend function when it is a priori unknown whether the series is trend-stationary or contains an autoregressive unit root. The procedure is based on a Feasible Quasi Generalized Least Squares method from an AR(1) specification with parameter α, the sum of the autoregressive coefficients. The estimate of α is the OLS estimate obtained from an autoregression applied to detrended data and is truncated to take a value 1 whenever the estimate is in a T−δ neighborhood of 1. This makes the estimate “super-efficient” when α=1 and implies that inference on the slope parameter can be performed using the standard Normal distribution whether α=1 or |α|<1. Theoretical arguments and simulation evidence show that δ=1/2 is the appropriate choice. Simulations show that our procedure has better size and power properties than the tests proposed by [Bunzel, H., Vogelsang, T.J., 2005. Powerful trend function tests that are robust to strong serial correlation with an application to the Prebish–Singer hypothesis. Journal of Business and Economic Statistics 23, 381–394] and [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R., 2007. A simple, robust and powerful test of the trend hypothesis. Journal of Econometrics 141, 1302–1330]. 相似文献
5.
6.
We consider a semiparametric cointegrating regression model, for which the disequilibrium error is further explained nonparametrically by a functional of distributions changing over time. The paper develops the statistical theories of the model. We propose an efficient econometric estimator and obtain its asymptotic distribution. A specification test for the model is also investigated. The model and methodology are applied to analyze how an aging population in the US influences the consumption level and the savings rate. We find that the impact of age distribution on the consumption level and the savings rate is consistent with the life-cycle hypothesis. 相似文献
7.
Recent approaches to testing for a unit root when uncertainty exists over the presence and timing of a trend break employ break detection methods, so that a with-break unit root test is used only if a break is detected by some auxiliary statistic. While these methods achieve near asymptotic efficiency in both fixed trend break and no trend break environments, in finite samples pronounced “valleys” in the power functions of the tests (when mapped as functions of the break magnitude) are observed, with power initially high for very small breaks, then decreasing as the break magnitude increases, before increasing again. In response to this problem, we propose two practical solutions, based either on the use of a with-break unit root test but with adaptive critical values, or on a union of rejections principle taken across with-break and without-break unit root tests. These new procedures are shown to offer improved reliability in terms of finite sample power. We also develop local limiting distribution theory for both the extant and the newly proposed unit root statistics, treating the trend break magnitude as local-to-zero. We show that this framework allows the asymptotic analysis to closely approximate the finite sample power valley phenomenon, thereby providing useful analytical insights. 相似文献
8.
In this paper we consider tests for the null of (trend-) stationarity against the alternative of a change in persistence at some (known or unknown) point in the observed sample, either from I(0) to I(1) behaviour or vice versa, of, inter alia, [Kim, J., 2000. Detection of change in persistence of a linear time series. Journal of Econometrics 95, 97–116]. We show that in circumstances where the innovation process displays non-stationary unconditional volatility of a very general form, which includes single and multiple volatility breaks as special cases, the ratio-based statistics used to test for persistence change do not have pivotal limiting null distributions. Numerical evidence suggests that this can cause severe over-sizing in the tests. In practice it may therefore be hard to discriminate between persistence change processes and processes with constant persistence but which display time-varying unconditional volatility. We solve the identified inference problem by proposing wild bootstrap-based implementations of the tests. Monte Carlo evidence suggests that the bootstrap tests perform well in finite samples. An empirical illustration using US price inflation data is provided. 相似文献
9.
We consider issues related to the order of an autoregression selected using information criteria. We study the sensitivity of the estimated order to (i) whether the effective number of observations is held fixed when estimating models of different order, (ii) whether the estimate of the variance is adjusted for degrees of freedom, and (iii) how the penalty for overfitting is defined in relation to the total sample size. Simulations show that the lag length selected by both the Akaike and the Schwarz information criteria are sensitive to these parameters in finite samples. The methods that give the most precise estimates are those that hold the effective sample size fixed across models to be compared. Theoretical considerations reveal that this is indeed necessary for valid model comparisons. Guides to robust model selection are provided. 相似文献
10.
Log periodogram (LP) regression is shown to be consistent and to have a mixed normal limit distribution when the memory parameter d=1. Gaussian errors are not required. The proof relies on a new result showing that asymptotically infinite collections of discrete Fourier transforms (dft's) of a short memory process at the fundamental frequencies in the vicinity of the origin can be treated as asymptotically independent normal variates, provided one does not include too many dft's in the collection. 相似文献
11.
The paper proposes a novel inference procedure for long-horizon predictive regression with persistent regressors, allowing the autoregressive roots to lie in a wide vicinity of unity. The invalidity of conventional tests when regressors are persistent has led to a large literature dealing with inference in predictive regressions with local to unity regressors. Magdalinos and Phillips (2009b) recently developed a new framework of extended IV procedures (IVX) that enables robust chi-square testing for a wider class of persistent regressors. We extend this robust procedure to an even wider parameter space in the vicinity of unity and apply the methods to long-horizon predictive regression. Existing methods in this model, which rely on simulated critical values by inverting tests under local to unity conditions, cannot be easily extended beyond the scalar regressor case or to wider autoregressive parametrizations. In contrast, the methods developed here lead to standard chi-square tests, allow for multivariate regressors, and include predictive processes whose roots may lie in a wide vicinity of unity. As such they have many potential applications in predictive regression. In addition to asymptotics under the null hypothesis of no predictability, the paper investigates validity under the alternative, showing how balance in the regression may be achieved through the use of localizing coefficients and developing local asymptotic power properties under such alternatives. These results help to explain some of the empirical difficulties that have been encountered in establishing predictability of stock returns. 相似文献
12.
Harvey, Leybourne and Taylor [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. 2009. Simple, robust and powerful tests of the breaking trend hypothesis. Econometric Theory 25, 995–1029] develop a test for the presence of a broken linear trend at an unknown point in the sample whose size is asymptotically robust as to whether the (unknown) order of integration of the data is either zero or one. This test is not size controlled, however, when this order assumes fractional values; its asymptotic size can be either zero or one in such cases. In this paper we suggest a new test, based on a sup-Wald statistic, which is asymptotically size-robust across fractional values of the order of integration (including zero or one). We examine the asymptotic power of the test under a local trend break alternative. The finite sample properties of the test are also investigated. 相似文献
13.
This paper proposes a robustification of the test statistic of Aït-Sahalia and Jacod (2009b) for the presence of market microstructure noise in high frequency data, based on the pre-averaging method of Jacod et al. (2010). We show that the robustified statistic restores the test’s discriminating power between jumps and no jumps despite the presence of market microstructure noise in the data. 相似文献
14.
In this paper we provide a joint treatment of two major problems that surround testing for a unit root in practice: uncertainty as to whether or not a linear deterministic trend is present in the data, and uncertainty as to whether the initial condition of the process is (asymptotically) negligible or not. We suggest decision rules based on the union of rejections of four standard unit root tests (OLS and quasi-differenced demeaned and detrended ADF unit root tests), along with information regarding the magnitude of the trend and initial condition, to allow simultaneously for both trend and initial condition uncertainty. 相似文献
15.
We study estimation and inference in cointegrated regression models with multiple structural changes allowing both stationary and integrated regressors. Both pure and partial structural change models are analyzed. We derive the consistency, rate of convergence and the limit distribution of the estimated break fractions. Our technical conditions are considerably less restrictive than those in Bai et al. [Bai, J., Lumsdaine, R.L., Stock, J.H., 1998. Testing for and dating breaks in multivariate time series. Review of Economic Studies 65, 395–432] who considered the single break case in a multi-equations system, and permit a wide class of practically relevant models. Our analysis is, however, restricted to a single equation framework. We show that if the coefficients of the integrated regressors are allowed to change, the estimated break fractions are asymptotically dependent so that confidence intervals need to be constructed jointly. If, however, only the intercept and/or the coefficients of the stationary regressors are allowed to change, the estimates of the break dates are asymptotically independent as in the stationary case analyzed by Bai and Perron [Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66, 47–78]. We also show that our results remain valid, under very weak conditions, when the potential endogeneity of the non-stationary regressors is accounted for via an increasing sequence of leads and lags of their first-differences as additional regressors. Simulation evidence is presented to assess the adequacy of the asymptotic approximations in finite samples. 相似文献
16.
17.
We analyze optimality properties of maximum likelihood (ML) and other estimators when the problem does not necessarily fall within the locally asymptotically normal (LAN) class, therefore covering cases that are excluded from conventional LAN theory such as unit root nonstationary time series. The classical Hájek–Le Cam optimality theory is adapted to cover this situation. We show that the expectation of certain monotone “bowl-shaped” functions of the squared estimation error are minimized by the ML estimator in locally asymptotically quadratic situations, which often occur in nonstationary time series analysis when the LAN property fails. Moreover, we demonstrate a direct connection between the (Bayesian property of) asymptotic normality of the posterior and the classical optimality properties of ML estimators. 相似文献
18.
19.
We propose methods for constructing confidence sets for the timing of a break in level and/or trend that have asymptotically correct coverage for both I(0) and I(1) processes. These are based on inverting a sequence of tests for the break location, evaluated across all possible break dates. We separately derive locally best invariant tests for the I(0) and I(1) cases; under their respective assumptions, the resulting confidence sets provide correct asymptotic coverage regardless of the magnitude of the break. We suggest use of a pre-test procedure to select between the I(0)- and I(1)-based confidence sets, and Monte Carlo evidence demonstrates that our recommended procedure achieves good finite sample properties in terms of coverage and length across both I(0) and I(1) environments. An application using US macroeconomic data is provided which further evinces the value of these procedures. 相似文献