首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pre-service Technology Teacher Education Resource (PTTER) was developed as a cross-institutional resource to support the development of initial technology teacher education programmes in New Zealand. The PTTER was developed through collaboration involving representatives from each of the six New Zealand university teacher education providers, Massey University, University of Auckland, University of Canterbury, University of Otago, Victoria University and University of Waikato, working with the National Technology Professional Development Manager. The framework for PTTER is built on four key elements considered to be essential to the education of technology teachers. The four elements are: philosophy of technology, rationale for technology education, technology in the New Zealand curriculum, and teaching technology. The PTTER is a web-based resource aimed at assisting technology teacher educators in the development of their teacher education programmes. The framework is a statement of shared philosophy, purpose and intent and is located on the Techlink website (www.techlink.org.nz). PTTER contains a range of teaching resources and strategies located within an overall framework for initial technology teacher education programmes. This paper describes the rationale for the PTTER framework, the process through which it was developed, explanation of each of the framework’s elements, and concludes with discussion of the framework’s implementation and future development.  相似文献   

2.
This paper reflects on the outcomes of teacher professional development programmes in technology education. These programmes were based on a model which emphasised the importance of teachers developing an understanding of both technological practice and technology education. Two different programmes have been developed and trialed in the New Zealand context. They are the Facilitator Training programme, and the Technology Teacher Development Resource Package programme. This paper will focus on the outcomes of these programmes. The Facilitator Training programme was a year long programme, and ran in 1995 and 1996. It involved training a total of 30 educators – 15 each year, from all over New Zealand. The Resource Package was trialed in 14 schools over a 3–6 month period in 1996. The evaluations indicate the successful nature of these programmes and the usefulness of the model as a basis for the development of teacher professional development in technology education. The programmes reported on in this paper were developed and evaluated as part of two New Zealand Ministry of Education contracts held by the Centre for Science, Mathematics and Technology Education Research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
This paper reports on detailed case studies into emerging assessment practices in technology in two New Zealand primary schools (Years 1–6) with nine teachers. This research is part of the two year Research in Assessment of Primary Technology (RAPT) project and formed the basis for the one year New Zealand Ministry of Education funded Learning in Technology Education (Assessment) project.Emerging classroom assessment practices in technology, a new subject area in the national curriculum, are discussed. It was found that the existing subcultures in schools, teachers' subject expertise and the school wide policies impacted on the teachers' assessment practices. Assessment was often seen in terms of social and managerial aspects such as team work, turn taking and information skills, rather than procedural and conceptual aspects. Therefore teachers' formative interactions with students distorted the learning away from procedural and conceptual aspects of the subject, and the learning and the formative assessment interactions focused on generic skills rather than student technological understanding.The importance of developing teacher expertise in three dimensions of knowledge about the subject, knowledge in the subject and general pedagogical knowledge is highlighted. Thus the findings from this research have implications for thinking about teaching, learning and assessment in technology.  相似文献   

4.
This paper presents the findings of a longitudinal study on the effectiveness of an innovative one-year pre-service Graduate Diploma of Teaching (secondary) for teachers of Technology. The timing of this study is significant. Over a decade of review and adjustment to the Technology curriculum, leading to the new learning area of Technology in the New Zealand curriculum, Ministry of Education (2007), has caused many teachers in New Zealand schools to retrench to an earlier approach or make their own interpretation of curricular requirements. This situation in schools created the need for those involved with pre-service teacher education to prepare programmes that signpost pitfalls while building on students’ own strengths and those of the curriculum to cope with the wide variety of interpretation and pedagogical approach of school communities. This paper suggests a way forward.  相似文献   

5.
In 1999 Technology in the New Zealand Curriculum became mandatory. It was developed over a period of approximately four years from conception to publication, with wide consultation. It was first published in October 1995. During the three years between publication and gazetting many teachers were involved in professional development. During this time it became obvious that there was confusion amongst teachers about the meaning of `authenticity' in relation to technology programmes. Do technological problems need to be authentic to the students themselves or to the nature of technological practice? Many learning theories have informed the development of this document. Those selected here indicate quite clearly the meaning and context of authenticity with regard to technology education. By involving our students in activity that is authentic to technological practice or real world technology, teachers are able to provide stimulating and relevant learning for students. This was also the indication in recent communication from the Ministry of Education in New Zealand during the 1999 Technology Education New Zealand (TENZ) conference. By giving academic value to technology and developing our teachers in the fields of technological practice we hope our students will influence the economic status of our country in the future.  相似文献   

6.
In this issue of the International Journal of Technology and Design, we report on a series of case studies from the second phase of an international project—Developing Professional Thinking for Technology Teachers (DEPTH2). The first phase of the project was a study conducted with both primary and secondary technology pre-service teacher education students in a number of different countries who were given the same teacher-knowledge graphical framework as a tool to support reflection on their professional knowledge. We discovered that, despite the different country contexts, student teachers of technology could articulate aspects of their developing teacher knowledge using the same framework for teacher professional development. As previously reported in this journal (Banks et al. International Journal of Technology and Design Education, 14, 141–157, 2004), the common graphical tool enabled them to set out their subject knowledge, pedagogical knowledge and ‘school’ knowledge and was useful in helping them become more self-aware. In this second phase of the project we have developed this line of research in two ways. First, we extended the range of participants to include experienced teachers involved in in-service work connected to curriculum development. Second, we looked at the inter-relationship for pre-service teachers between their developing professional knowledge and their own ‘personal subject construct’. In this article, the theoretical framework for the subsequent papers is described and set in the context of recent debates surrounding the nature and importance of teacher knowledge; and the way such professional knowledge can be articulated by teachers.  相似文献   

7.
The stated aim of technology education in New Zealand is to develop students' level of technological literacy. This paper introduces the Technology Assessment Framework (TAF) as an organisational tool for the development and delivery of technology programmes that focus on increasing students' technological literacy through the enhancement of their technological practice across technological areas and contexts. The TAF was developed and refined in 1999 and 2000 as part of a two year New Zealand Ministry of Education funded research project, and integrated within a national professional development programme in 2000 designed for preservice and inservice teacher educators in New Zealand.This paper backgrounds the sociocultural theoretical position of the TAF and explains how it reflects and furthers the aim of technology education in New Zealand. The TAF is then presented and explained with the aid of illustrative examples from classroom practice.  相似文献   

8.
The recently revised New Zealand Curriculum in technology education [Ministry of Education (MoE) Digital technologies: Hangarau Matihiki, Wellington, 2017. https://education.govt.nz/assets/Documents/Ministry/consultations/DT-consultation/DTCP1701-Digital-Technologies-Hangarau-Matihiko-ENG.pdf] presents opportunities for teachers to provide a future-focused approach to learning. Teacher perceptions about the nature of their subject and the discourse within their school however, influence how the curriculum is interpreted, for enactment. This article reports findings from Ph.D. research that explored the disparity between the intent of the technology curriculum and the practice of five technology teachers, in two secondary school settings. There is a focus on the ways that teachers might be supported to navigate challenges and enable change in their practice, if they are motivated to enact technology education in a future-focused way. Teachers’ interpretation and enactment of the New Zealand curriculum are heavily influenced by others’ understanding of their subject, and the organisational structures in their school. A threshold concept is presented as a strategy to transform teachers’ thinking, when making meaning of the curriculum, and to develop their knowledge for practice. Recommendations are made regarding the necessary changes in thinking and practice in technology education in New Zealand, to address a further disparity between what school-based practitioners believe students need and what academic researchers assert is important in contemporary education. Initial Teacher Education Programmes are briefly discussed as a means of addressing this issue from another perspective, to ensure that student teachers are exposed to future-focused conceptions of the curriculum at University, to compensate when such practice is not observed during their school placements.  相似文献   

9.
This paper reports on findings related to Technological Knowledge from Stage Two of the Technological Knowledge and Nature of Technology: Implications for teaching and learning (TKNoT: Imps) research project undertaken in 2009. A key focus in Stage Two was the trialing of different teaching strategies to determine how learning related to the components Technological Modelling (TM), Technological Products (TP) and Technological Systems (TS) could be supported. These components fall within the Technological Knowledge (TK) strand of technology in the New Zealand Curriculum (NZC) (Ministry of Education, 2007) and as such, reflect the key generic concepts or ‘big ideas’ of technology. During this stage of the research further exploration was also undertaken to determine how student understanding of these three components of technology education progressed from level 1 to 8 of the NZC (Ministry of Education, 2007). This resulted in a significant review of the Indicators of Progression for TM, TP and TS, providing clarification of the nature of the progression expected of students in each component as well as increased teacher guidance to support such progression. Common misconceptions, partial understandings and alternative concepts related to these components were confirmed and explained and five case studies were developed to illustrate strategies employed by teachers and their impact on student learning related to these three components.  相似文献   

10.
This paper reports on findings related to the Nature of Technology from Stage Two of the Technological Knowledge and Nature of Technology: Implications for teaching and learning (TKNoT: Imps) research project undertaken in 2009. A key focus in Stage Two was the trialing of different teaching strategies to determine how learning related to the components Characteristics of Technology (CoT) and Characteristics of Technological Outcomes (COTO) could be supported. These components fall within the Nature of Technology (NoT) strand of technology in the New Zealand Curriculum (NZC) (Ministry of Education, 2007) and as such, reflect a philosophical understanding of technology as a discipline. During this stage of the research further exploration was undertaken to determine how student understanding of these two components of technology education progressed from level 1 to level 8 of the NZC (Ministry of Education, 2007). Common misconceptions and partial understandings related to these components are identified and explained and four case studies are presented to illustrate strategies employed by teachers and their impact on student learning related to these two components. The Stage Two outcomes resulted in the revision of the Indicators of Progression for CoT and CoTO in order to clarify the progression expected of students in each component and provide increased teacher guidance to support such progression.  相似文献   

11.
Understanding and undertaking technological practice is fundamental to student learning in technology education in New Zealand, and the enhancement of student technological literacy. The implementation of technology into New Zealand’s core curriculum has reached the stage where it has become critical that learning programmes are based on student progression to allow for a seamless education in technology from early primary to senior secondary. For this to occur, teachers and students need to focus learning on key features of technology education. This paper is based on research initiated in 2001 which explored the nature of progression of student learning in technology. It draws on findings from research undertaken in New Zealand classrooms in 1999–2000 that resulted in the development of the technology assessment framework (TAF), (as reported in detail Compton & Harwood 2003). The 1999–2001 research was funded by the New Zealand Ministry of Education. Findings from the 2001 research allowed for the identification of key features of technology education that are relevant across all age groups, contexts and technological areas. These key features were collectively termed components of practice. The three components of practice established to date are brief development, planning for practice, and outcome development and evaluation. This paper discusses the development of progression matrices for each of these and provides illustrative examples of student work levelled against the matrix indicators of progression for brief development.  相似文献   

12.
This paper reports on a professional development that was designed and implemented in an attempt to broaden teachers’ knowledge of the nature of technology and also enhance their technological pedagogical practices. The professional development was organised in four phases with each phase providing themes for reflection and teacher learning in subsequent phases. On-going support, reflection and feedback underpinned the professional development processes to enhance teachers’ prospects of putting aside old traditions and culture to implement new practices in their classrooms. The teachers collaboratively explored new concepts through readings of selected scholarly papers, making presentations of their views generated from the readings and engaging with peers in discussing learning, curriculum issues and concepts related to the nature of technology and technology education. A qualitative analysis of the teachers’ journey through the phases of the professional development showed the teachers’ enhanced knowledge of technology and technology education. However, their classroom practices showed technological pedagogical techniques that reflected their traditional strategies for teaching technical subjects. It is argued that although the teachers’ conceptualisation of learning in technology was still fragile at this point, attempts to shift teachers’ beliefs and practices require deep theoretical grounding and transferring that into technological practices. A professional development built on existing ideas and context helps expand the teachers’ views about the nature of technology and technology education.  相似文献   

13.
With the introduction of a new school curriculum in South Africa in 1998, Technology as a school subject was introduced for the first time. Implementation by the National Department of Education took place over a very short time frame allowing very little time for adequate training of technology teachers by the provincial departments of education. Teachers were expected to implement technology in schools without being adequately trained. They needed to develop their professional knowledge which comprises school knowledge, subject knowledge and pedagogical knowledge. This could mainly be done through continuing professional teacher development (CPTD). To address the lack of CPTD opportunities and to develop these teachers’ professional knowledge, the Unit for Technology Education at a university in South Africa established a Community of Practice (CoP) as a strategy to develop teachers’ professional knowledge in Civil Technology. However, after a number of CoP workshops, and although these CoPs have been designed to serve as a tool for CPTD, we do not know to what extent it succeeds in developing teachers’ professional knowledge. The purpose of this article is to determine to what extent the CoP succeeded in developing teachers’ professional knowledge. A qualitative study was conducted. Data were collected through the observation of the teachers during the CoPs, open-ended questionnaires and field notes taken during workshop discussions. The main findings were that the teachers gained discipline knowledge and acquired instructional methodology (pedagogy) from which learners may benefit. The presentation and organisation of the CoP influenced the learning of the teachers.  相似文献   

14.
Technology education in the New Zealand context has seen significant change since it’s inception as a technical subject. The changing nature of the subject in New Zealand secondary schools is influenced by some teachers’ preoccupation with the making of quality product outcomes, rather than their enactment of the curriculum, which conceptualises a wider remit. Research into the perceptions of technology teachers’ interpretation and enactment of the curriculum suggests that to enable change, teachers need to adopt a form of “technological thinking”, in support of their “technical thinking”. Technological thinking is a notion presented to support teachers to explore a range of differing pedagogical approaches and learning outcomes, reflective of the intent of the New Zealand curriculum, which aims to foster learning environments that are innovative and responsive to students’ social and academic needs.  相似文献   

15.
This paper describes the frameworks and cognitive tools that have been developed to enhance practising teachers' pedagogical content knowledge in primary school technology education. The frameworks evolved from our research that firstly examined existing teaching practices, secondly enhanced formative interactions and thirdly enhanced summative assessment strategies. The evidence gained over the three years demonstrated how the effective use of frameworks could be utilised to enhance teacher pedagogical content knowledge (PCK). How we see learning is of prime importance in examining the development of teacher pedagogical content knowledge. A sociocultural view of learning is taken where human mental processes are situated within their historical, cultural and institutional setting. In the research project we strongly emphasised the need for teachers to build a knowledge base for teaching technology. Critical aspects identified as enhancing PCK included: negotiated intervention, planning frameworks, reflection on case studies, workshops and support in classrooms, appropriate resources, teacher agreement meetings, portfolios of student work and summative profiles. The increased PCK resulted in: enhanced teacher knowledge about technology including the nature of technology, areas of technology and specific technological knowledge, changed pedagogical approaches, enhanced teacher student interaction, refinement of appropriate learning outcomes, critical decision making, improved teacher confidence, and enhanced student learning. Seven characteristics or features of pedagogical content knowledge that we believe are important for effective teaching and learning in technology are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Teacher knowledge guides a teacher’s behaviour in the classroom. Teacher knowledge for technology education is generally assumed to play an important role in affecting pupils’ learning in technology. There are an abundant number of teacher knowledge models that visualise different domains of teacher knowledge, but clear empirical evidence on how these domains interact is lacking. Insights into the interaction of teacher knowledge domains could be useful for teacher training. In this study, the hypothesised relations between different domains of teacher knowledge for technology education in primary schools were empirically investigated. Subject matter knowledge, pedagogical content knowledge, attitude, and self-efficacy were measured with tests and questionnaires. Results from a path analysis showed that subject matter knowledge is an important prerequisite for both pedagogical content knowledge and self-efficacy. Subsequently, teachers’ self-efficacy was found to have a strong influence on teachers’ attitude towards technology. Based on the findings in this study, it is recommended that teacher training should first of all focus on the development of teachers’ subject matter knowledge and pedagogical content knowledge. This knowledge will positively affect teachers’ confidence in teaching and, in turn, their attitude towards the subject. More confidence in technology teaching and a more positive attitude are expected to increase the frequency of technology education, which consequently increases teaching experience and thereby stimulates the development of teachers’ pedagogical content knowledge. This circle of positive reinforcement will eventually contribute to the quality of technology education in primary schools.  相似文献   

17.
The tools to help teachers reflect on their professional knowledge are few in number, and often difficult to utilise. This paper reports on a study conducted with both primary and secondary technology initial teacher education students in a number of different countries who were given the same teacher-knowledge graphical framework as a tool to support reflection on their own professional knowledge. We wanted to investigate if, despite the different country contexts, student teachers of technology could take advantage of their experience with graphic visualisation to help them articulate abstract notions such as aspects of their developing teacher knowledge. We discovered that the graphical tool acted as a framework that enabled them to set out their subject knowledge, pedagogical knowledge and `school' knowledge and was useful in helping them become more self-aware. In this paper, the framework itself is introduced, the way it was presented to the novice teachers is outlined and the relative impact of such `self awareness' on their understandings, enabled by the framework, is then discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
This article examines the effect of scientific detective video as a vehicle to support the design of technology activities by technology teachers. Ten graduate students, including current and future technology teachers, participated in a required technology graduate course that used scientific detective videos as a pedagogical tool to motivate their interest in science and technology and to reinforce creative competence in designing technology learning activities (TLAs). The participants watched three scientific detective videos and analyzed them for scientific principles and technologies. An analysis report and interview were conducted to collect participants’ understanding and application of scientific principles and technologies. The main findings were that (a) influencing teacher’s design of TLAs through scientific detective videos is feasible; (b) prior personal conditions and external factors influence teacher’s design of TLAs; and (c) the analysis of scientific detective videos helps teachers to design TLAs appropriately. This study demonstrated the broad utility of scientific detective videos for inspiring technology teachers to integrate science and technology in their activity design.  相似文献   

19.
Compared to other subjects Technology Education (TE) is regarded as a new subject both nationally and internationally. In the absence of an established subject philosophy Technology educators had little alternative than to base their professional teaching and learning practices on approaches from other fields of knowledge and to adapt these. TE is one of the compulsory subjects for learners in South Africa from grade 4–9 since 1998. One of the challenges was the fact that no previous teacher training programmes existed for Technology thus new ones had to be developed. This research described what the necessary knowledge, skills and values are that a qualified Technology teacher should possess and determined if teacher training institutions in South Africa provide opportunities to develop this qualities. Qualitative research was used to provide insight into the nature of pre-service Technology training programmes in South Africa, in order to identify shortcomings in the pre-service training of Technology teachers. The population consisted of senior faculty who have experience in the developing of pre-service training programmes and the training of Technology teachers. Findings of the study suggest a greater focus on the training of Technology teachers as subject specialists by establishing standards that is appropriate for tertiary training in order to enhance the development of subject knowledge; subject specific pedagogical content knowledge by implementing micro lessons; revision of time, planning and facilities for the practising of subject skills; and sufficient opportunities to practise, analyse and reflect on teaching processes to develop appropriate teaching strategies.  相似文献   

20.
The introduction of technology education in primary and secondary schools during the past 10–15 years around the world has presented a number of difficulties for teachers, primarily related to their coming to understand the phenomenon of technology and to conceptualise the technology learning area in line with national frameworks. This paper reports on a professional development experience that aimed to assist a small group of primary school teachers to develop their understandings of technology and technology education. A theoretical model framed a series of professional development interactions between the researchers and the experienced teachers who were new to teaching technology. Data sources included teacher interviews, video recordings of the activities, teacher made models, and extracts from their reflective journals. The study presented some insights into how professional development experiences for teachers new to technology could be organised and implemented to best support their developing technology practices and understandings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号