首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a simple way of predicting time series with recurring seasonal periods. Missing values of the time series are estimated and interpolated in a preprocessing step. We combine several forecasting methods by taking the weighted mean of forecasts that were generated with time-domain models which were validated on left-out parts of the time series. The hybrid model is a combination of a neural network ensemble, an ensemble of nearest trajectory models and a model for the 7-day cycle. We apply this approach to the NN5 time series competition data set.  相似文献   

2.
ARIMA融合神经网络的人民币汇率预测模型研究   总被引:1,自引:0,他引:1  
本文在深入分析了单整自回归移动平均(ARIMA)模型与神经网络(NN)模型特点的基础上,建立了ARIMA融合NN的人民币汇率时间序列预测模型。其基本思想是充分发挥两种模型在线性空间和非线性空间的预测优势,即将汇率时间序列的数据结构分解为线性自相关主体和非线性残差两部分,首先用ARI-MA模型预测序列的线性主体,然后用NN模型对其非线性残差进行估计,最终合成为整个序列的预测结果。通过对三种人民币汇率序列的仿真实验表明,融合模型的预测准确率显著高于包括随机游走模型在内的单一模型的预测准确率,从而证实了融合模型用于汇率预测的有效性。这一结果也表明,人民币汇率市场并不符合有效市场假设,可以通过模型对汇率未来走势做出较准确预测。  相似文献   

3.
This paper reports the results of the NN3 competition, which is a replication of the M3 competition with an extension of the competition towards neural network (NN) and computational intelligence (CI) methods, in order to assess what progress has been made in the 10 years since the M3 competition. Two masked subsets of the M3 monthly industry data, containing 111 and 11 empirical time series respectively, were chosen, controlling for multiple data conditions of time series length (short/long), data patterns (seasonal/non-seasonal) and forecasting horizons (short/medium/long). The relative forecasting accuracy was assessed using the metrics from the M3, together with later extensions of scaled measures, and non-parametric statistical tests. The NN3 competition attracted 59 submissions from NN, CI and statistics, making it the largest CI competition on time series data. Its main findings include: (a) only one NN outperformed the damped trend using the sMAPE, but more contenders outperformed the AutomatANN of the M3; (b) ensembles of CI approaches performed very well, better than combinations of statistical methods; (c) a novel, complex statistical method outperformed all statistical and CI benchmarks; and (d) for the most difficult subset of short and seasonal series, a methodology employing echo state neural networks outperformed all others. The NN3 results highlight the ability of NN to handle complex data, including short and seasonal time series, beyond prior expectations, and thus identify multiple avenues for future research.  相似文献   

4.
In this work we introduce the forecasting model with which we participated in the NN5 forecasting competition (the forecasting of 111 time series representing daily cash withdrawal amounts at ATM machines). The main idea of this model is to utilize the concept of forecast combination, which has proven to be an effective methodology in the forecasting literature. In the proposed system we attempted to follow a principled approach, and make use of some of the guidelines and concepts that are known in the forecasting literature to lead to superior performance. For example, we considered various previous comparison studies and time series competitions as guidance in determining which individual forecasting models to test (for possible inclusion in the forecast combination system). The final model ended up consisting of neural networks, Gaussian process regression, and linear models, combined by simple average. We also paid extra attention to the seasonality aspect, decomposing the seasonality into weekly (which is the strongest one), day of the month, and month of the year seasonality.  相似文献   

5.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings.  相似文献   

6.
We participated in the M4 competition for time series forecasting and here describe our methods for forecasting daily time series. We used an ensemble of five statistical forecasting methods and a method that we refer to as the correlator. Our retrospective analysis using the ground truth values published by the M4 organisers after the competition demonstrates that the correlator was responsible for most of our gains over the naïve constant forecasting method. We identify data leakage as one reason for its success, due partly to test data selected from different time intervals, and partly to quality issues with the original time series. We suggest that future forecasting competitions should provide actual dates for the time series so that some of these leakages could be avoided by participants.  相似文献   

7.
Forecasting monthly and quarterly time series using STL decomposition   总被引:1,自引:0,他引:1  
This paper is a re-examination of the benefits and limitations of decomposition and combination techniques in the area of forecasting, and also a contribution to the field, offering a new forecasting method. The new method is based on the disaggregation of time series components through the STL decomposition procedure, the extrapolation of linear combinations of the disaggregated sub-series, and the reaggregation of the extrapolations to obtain estimates for the global series. Applying the forecasting method to data from the NN3 and M1 Competition series, the results suggest that it can perform well relative to four other standard statistical techniques from the literature, namely the ARIMA, Theta, Holt-Winters’ and Holt’s Damped Trend methods. The relative advantages of the new method are then investigated further relative to a simple combination of the four statistical methods and a Classical Decomposition forecasting method. The strength of the method lies in its ability to predict long lead times with relatively high levels of accuracy, and to perform consistently well for a wide range of time series, irrespective of the characteristics, underlying structure and level of noise of the data.  相似文献   

8.
Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle the challenges of forecasting ultra-long time series using the industry-standard MapReduce framework. The proposed model combination approach retains the local time dependency. It utilizes a straightforward splitting across samples to facilitate distributed forecasting by combining the local estimators of time series models delivered from worker nodes and minimizing a global loss function. Instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we only make assumptions on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed approach with AutoRegressive Integrated Moving Average (ARIMA) models using the real data application as well as numerical simulations. Our approach improves forecasting accuracy and computational efficiency in point forecasts and prediction intervals, especially for longer forecast horizons, compared to directly fitting the whole data with ARIMA models. Moreover, we explore some potential factors that may affect the forecasting performance of our approach.  相似文献   

9.
This paper introduces a novel meta-learning algorithm for time series forecast model performance prediction. We model the forecast error as a function of time series features calculated from historical time series with an efficient Bayesian multivariate surface regression approach. The minimum predicted forecast error is then used to identify an individual model or a combination of models to produce the final forecasts. It is well known that the performance of most meta-learning models depends on the representativeness of the reference dataset used for training. In such circumstances, we augment the reference dataset with a feature-based time series simulation approach, namely GRATIS, to generate a rich and representative time series collection. The proposed framework is tested using the M4 competition data and is compared against commonly used forecasting approaches. Our approach provides comparable performance to other model selection and combination approaches but at a lower computational cost and a higher degree of interpretability, which is important for supporting decisions. We also provide useful insights regarding which forecasting models are expected to work better for particular types of time series, the intrinsic mechanisms of the meta-learners, and how the forecasting performance is affected by various factors.  相似文献   

10.
A decomposition clustering ensemble (DCE) learning approach is proposed for forecasting foreign exchange rates by integrating the variational mode decomposition (VMD), the self-organizing map (SOM) network, and the kernel extreme learning machine (KELM). First, the exchange rate time series is decomposed into N subcomponents by the VMD method. Second, each subcomponent series is modeled by the KELM. Third, the SOM neural network is introduced to cluster the subcomponent forecasting results of the in-sample dataset to obtain cluster centers. Finally, each cluster's ensemble weight is estimated by another KELM, and the final forecasting results are obtained by the corresponding clusters' ensemble weights. The empirical results illustrate that our proposed DCE learning approach can significantly improve forecasting performance, and statistically outperform some other benchmark models in directional and level forecasting accuracy.  相似文献   

11.
It has long been known that combination forecasting strategies produce superior out-of-sample forecasting performances. In the M4 forecasting competition, a very simple forecast combination strategy achieved third place on yearly time series. An analysis of the ensemble model and its component models suggests that the competitive accuracy comes from avoiding poor forecasts, rather than from beating the best individual models. Moreover, the simple ensemble model can be fitted very quickly, can easily scale horizontally with additional CPU cores or a cluster of computers, and can be implemented by users very quickly and easily. This approach might be of particular interest to users who need accurate yearly forecasts without being able to spend significant time, resources, or expertise on tuning models. Users of the R statistical programming language can access this modeling approach using the “forecastHybrid” package.  相似文献   

12.
The main objective of the M5 competition, which focused on forecasting the hierarchical unit sales of Walmart, was to evaluate the accuracy and uncertainty of forecasting methods in the field to identify best practices and highlight their practical implications. However, can the findings of the M5 competition be generalized and exploited by retail firms to better support their decisions and operation? This depends on the extent to which M5 data is sufficiently similar to unit sales data of retailers operating in different regions selling different product types and considering different marketing strategies. To answer this question, we analyze the characteristics of the M5 time series and compare them with those of two grocery retailers, namely Corporación Favorita and a major Greek supermarket chain, using feature spaces. Our results suggest only minor discrepancies between the examined data sets, supporting the representativeness of the M5 data.  相似文献   

13.
We propose an automated method for obtaining weighted forecast combinations using time series features. The proposed approach involves two phases. First, we use a collection of time series to train a meta-model for assigning weights to various possible forecasting methods with the goal of minimizing the average forecasting loss obtained from a weighted forecast combination. The inputs to the meta-model are features that are extracted from each series. Then, in the second phase, we forecast new series using a weighted forecast combination, where the weights are obtained from our previously trained meta-model. Our method outperforms a simple forecast combination, as well as all of the most popular individual methods in the time series forecasting literature. The approach achieved second position in the M4 competition.  相似文献   

14.
This brief note describes two of the forecasting methods used in the M3 Competition, Robust Trend and ARARMA. The origins of these methods are very different. Robust Trend was introduced to model the special features of some telecommunications time series. It was subsequently found to be competitive with Holt’s linear model for the more varied set of time series used in the M1 Competition. The ARARMA methodology was proposed by Parzen as a general time series modelling procedure, and can be thought of as an alternative to the ARIMA methodology of Box and Jenkins. This method was used in the M1 Competition and achieved the lowest mean absolute percentage error for longer forecasting horizons. These methods will be described in more detail and some comments on their use in the M3 Competition conclude this note.  相似文献   

15.
We test the predictive accuracy of forecasts of the number of COVID-19 fatalities produced by several forecasting teams and collected by the United States Centers for Disease Control and Prevention for the epidemic in the United States. We find three main results. First, at the short horizon (1 week ahead) no forecasting team outperforms a simple time-series benchmark. Second, at longer horizons (3 and 4 week ahead) forecasters are more successful and sometimes outperform the benchmark. Third, one of the best performing forecasts is the Ensemble forecast, that combines all available predictions using uniform weights. In view of these results, collecting a wide range of forecasts and combining them in an ensemble forecast may be a superior approach for health authorities, rather than relying on a small number of forecasts.  相似文献   

16.
The well-developed ETS (ExponenTial Smoothing, or Error, Trend, Seasonality) method incorporates a family of exponential smoothing models in state space representation and is widely used for automatic forecasting. The existing ETS method uses information criteria for model selection by choosing an optimal model with the smallest information criterion among all models fitted to a given time series. The ETS method under such a model selection scheme suffers from computational complexity when applied to large-scale time series data. To tackle this issue, we propose an efficient approach to ETS model selection by training classifiers on simulated data to predict appropriate model component forms for a given time series. We provide a simulation study to show the model selection ability of the proposed approach on simulated data. We evaluate our approach on the widely used M4 forecasting competition dataset in terms of both point forecasts and prediction intervals. To demonstrate the practical value of our method, we showcase the performance improvements from our approach on a monthly hospital dataset.  相似文献   

17.
Global forecasting models (GFMs) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications compared with univariate forecasting approaches. One aspect of the popularity of statistical forecasting models such as ETS and ARIMA is their relative simplicity and interpretability (in terms of relevant lags, trend, seasonality, and other attributes), while GFMs typically lack interpretability, especially relating to particular time series. This reduces the trust and confidence of stakeholders when making decisions based on the forecasts without being able to understand the predictions. To mitigate this problem, we propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs. We train simpler univariate surrogate models that are considered interpretable (e.g., ETS) on the predictions of the GFM on samples within a neighbourhood that we obtain through bootstrapping, or straightforwardly as the one-step-ahead global black-box model forecasts of the time series which needs to be explained. After, we evaluate the explanations for the forecasts of the global models in both qualitative and quantitative aspects such as accuracy, fidelity, stability, and comprehensibility, and are able to show the benefits of our approach.  相似文献   

18.
There is an ongoing debate in the social sciences about whether or not financial incentives are needed in order to obtain good performance from experimental subjects. This debate often extends into the research on judgmental forecasting. Thus, an experiment was conducted to assess the effects of financial incentives on time series forecasting accuracy. There was no evidence that financial incentives impacted forecasting accuracy in stable time series. Financial incentives also had no impact immediately after instabilities occurred and no impact once the trend in the data had fully emerged.  相似文献   

19.
We examine the effect of damping X-12-ARIMA's estimated seasonal variation on the accuracy of its seasonal adjustments of time series. Two methods for damping seasonals are proposed. In a simulation experiment, we generated time series data for each of 90 distinct experimental conditions that, in aggregate, characterize the variety of monthly series in the M3-competition. X-12-ARIMA consistently overestimated the actual seasonal variation by an amount consistent with statistical theory. Damping seasonals reduced X-12-ARIMA's estimation error by as much as 79% and under no conditions was estimation error increased beyond a trivial amount. Improvement depended primarily on the degree to which random variation in a series dominated seasonal variation. When the multiplicative X-12-ARIMA model did not match the data-generating model, overestimation was less for trend series than for series with no trend; otherwise the presence of trend had no discernible effect. One of the proposed methods was somewhat more accurate and robust, but more complex, than the other. In an analysis of real data—the 1428 monthly series of the M3-competition-damping X-12-ARIMA seasonals prior to forecasting (1) reduced the average forecasting MAPE by 4.9–1.4% and (2) improved forecasting accuracy for 59–65% of the series, depending on the forecasting horizon. This research suggests that damping X-12-ARIMA seasonals leads to more accurate seasonal adjustments of time series, thus providing a more reliable basis for policy-making, forecasting, and the evaluation of forecasting methods by researchers.  相似文献   

20.
A new method for forecasting the trend of time series, based on mixture of MLP experts, is presented. In this paper, three neural network combining methods and an Adaptive Network-Based Fuzzy Inference System (ANFIS) are applied to trend forecasting in the Tehran stock exchange. There are two experiments in this study. In experiment I, the time series data are the Kharg petrochemical company’s daily closing prices on the Tehran stock exchange. In this case study, which considers different schemes for forecasting the trend of the time series, the recognition rates are 75.97%, 77.13% and 81.64% for stacked generalization, modified stacked generalization and ANFIS, respectively. Using the mixture of MLP experts (ME) scheme, the recognition rate is strongly increased to 86.35%. A gain and loss analysis is also used, showing the relative forecasting success of the ME method with and without rejection criteria, compared to a simple buy and hold approach. In experiment II, the time series data are the daily closing prices of 37 companies on the Tehran stock exchange. This experiment is conducted to verify the results of experiment I and to show the efficiency of the ME method compared to stacked generalization, modified stacked generalization and ANFIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号