首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a simple way of predicting time series with recurring seasonal periods. Missing values of the time series are estimated and interpolated in a preprocessing step. We combine several forecasting methods by taking the weighted mean of forecasts that were generated with time-domain models which were validated on left-out parts of the time series. The hybrid model is a combination of a neural network ensemble, an ensemble of nearest trajectory models and a model for the 7-day cycle. We apply this approach to the NN5 time series competition data set.  相似文献   

2.
    
  相似文献   

3.
    
We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it.  相似文献   

4.
    
The M5 competition follows the previous four M competitions, whose purpose is to learn from empirical evidence how to improve forecasting performance and advance the theory and practice of forecasting. M5 focused on a retail sales forecasting application with the objective to produce the most accurate point forecasts for 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world, Walmart, as well as to provide the most accurate estimates of the uncertainty of these forecasts. Hence, the competition consisted of two parallel challenges, namely the Accuracy and Uncertainty forecasting competitions. M5 extended the results of the previous M competitions by: (a) significantly expanding the number of participating methods, especially those in the category of machine learning; (b) evaluating the performance of the uncertainty distribution along with point forecast accuracy; (c) including exogenous/explanatory variables in addition to the time series data; (d) using grouped, correlated time series; and (e) focusing on series that display intermittency. This paper describes the background, organization, and implementations of the competition, and it presents the data used and their characteristics. Consequently, it serves as introductory material to the results of the two forecasting challenges to facilitate their understanding.  相似文献   

5.
    
Performance measures of point forecasts are expressed commonly as skill scores, in which the performance gain from using one forecasting system over another is expressed as a proportion of the gain achieved by forecasting that outcome perfectly. Increasingly, it is common to express scores of probabilistic forecasts in this form; however, this paper presents three criticisms of this approach. Firstly, initial condition uncertainty (which is outside the forecaster’s control) limits the capacity to improve a probabilistic forecast, and thus a ‘perfect’ score is often unattainable. Secondly, the skill score forms of the ignorance and Brier scores are biased. Finally, it is argued that the skill score form of scoring rules destroys the useful interpretation in terms of the relative skill levels of two forecasting systems. Indeed, it is often misleading, and useful information is lost when the skill score form is used in place of the original score.  相似文献   

6.
    
The main objective of the M5 competition, which focused on forecasting the hierarchical unit sales of Walmart, was to evaluate the accuracy and uncertainty of forecasting methods in the field to identify best practices and highlight their practical implications. However, can the findings of the M5 competition be generalized and exploited by retail firms to better support their decisions and operation? This depends on the extent to which M5 data is sufficiently similar to unit sales data of retailers operating in different regions selling different product types and considering different marketing strategies. To answer this question, we analyze the characteristics of the M5 time series and compare them with those of two grocery retailers, namely Corporación Favorita and a major Greek supermarket chain, using feature spaces. Our results suggest only minor discrepancies between the examined data sets, supporting the representativeness of the M5 data.  相似文献   

7.
    
In this study, we present the results of the M5 “Accuracy” competition, which was the first of two parallel challenges in the latest M competition with the aim of advancing the theory and practice of forecasting. The main objective in the M5 “Accuracy” competition was to accurately predict 42,840 time series representing the hierarchical unit sales for the largest retail company in the world by revenue, Walmart. The competition required the submission of 30,490 point forecasts for the lowest cross-sectional aggregation level of the data, which could then be summed up accordingly to estimate forecasts for the remaining upward levels. We provide details of the implementation of the M5 “Accuracy” challenge, as well as the results and best performing methods, and summarize the major findings and conclusions. Finally, we discuss the implications of these findings and suggest directions for future research.  相似文献   

8.
Forecast combination is a well-established and well-tested approach for improving the forecasting accuracy. One beneficial strategy is to use constituent forecasts that have diverse information. In this paper we consider the idea of diversity being accomplished by using different time aggregations. For example, we could create a yearly time series from a monthly time series and produce forecasts for both, then combine the forecasts. These forecasts would each be tracking the dynamics of different time scales, and would therefore add diverse types of information. A comparison of several forecast combination methods, performed in the context of this setup, shows that this is indeed a beneficial strategy and generally provides a forecasting performance that is better than the performances of the individual forecasts that are combined.As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we consider 33 individual source countries, as well as the aggregate. The novel combination strategy also produces a generally improved forecasting accuracy.  相似文献   

9.
    
Several researchers (Armstrong, 2001; Clemen, 1989; Makridakis and Winkler, 1983) have shown empirically that combination-based forecasting methods are very effective in real world settings. This paper discusses a combination-based forecasting approach that was used successfully in the M4 competition. The proposed approach was evaluated on a set of 100K time series across multiple domain areas with varied frequencies. The point forecasts submitted finished fourth based on the overall weighted average (OWA) error measure and second based on the symmetric mean absolute percent error (sMAPE).  相似文献   

10.
    
This paper describes the M5 “Uncertainty” competition, the second of two parallel challenges of the latest M competition, aiming to advance the theory and practice of forecasting. The particular objective of the M5 “Uncertainty” competition was to accurately forecast the uncertainty distributions of the realized values of 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world by revenue, Walmart. To do so, the competition required the prediction of nine different quantiles (0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835, 0.975, and 0.995), that can sufficiently describe the complete distributions of future sales. The paper provides details on the implementation and execution of the M5 “Uncertainty” competition, presents its results and the top-performing methods, and summarizes its major findings and conclusions. Finally, it discusses the implications of its findings and suggests directions for future research.  相似文献   

11.
    
Forecasting competitions are now so widespread that it is often forgotten how controversial they were when first held, and how influential they have been over the years. I briefly review the history of forecasting competitions, and discuss what we have learned about their design and implementation, and what they can tell us about forecasting. I also provide a few suggestions for potential future competitions, and for research about forecasting based on competitions.  相似文献   

12.
    
Deep neural networks and gradient boosted tree models have swept across the field of machine learning over the past decade, producing across-the-board advances in performance. The ability of these methods to capture feature interactions and nonlinearities makes them exceptionally powerful and, at the same time, prone to overfitting, leakage, and a lack of generalization in domains with target non-stationarity and collinearity, such as time-series forecasting. We offer guidance to address these difficulties and provide a framework that maximizes the chances of predictions that generalize well and deliver state-of-the-art performance. The techniques we offer for cross-validation, augmentation, and parameter tuning have been used to win several major time-series forecasting competitions—including the M5 Forecasting Uncertainty competition and the Kaggle COVID19 Forecasting series—and, with the proper theoretical grounding, constitute the current best practices in time-series forecasting.  相似文献   

13.
  总被引:1,自引:0,他引:1  
The M4 Competition follows on from the three previous M competitions, the purpose of which was to learn from empirical evidence both how to improve the forecasting accuracy and how such learning could be used to advance the theory and practice of forecasting. The aim of M4 was to replicate and extend the three previous competitions by: (a) significantly increasing the number of series, (b) expanding the number of forecasting methods, and (c) including prediction intervals in the evaluation process as well as point forecasts. This paper covers all aspects of M4 in detail, including its organization and running, the presentation of its results, the top-performing methods overall and by categories, its major findings and their implications, and the computational requirements of the various methods. Finally, it summarizes its main conclusions and states the expectation that its series will become a testing ground for the evaluation of new methods and the improvement of the practice of forecasting, while also suggesting some ways forward for the field.  相似文献   

14.
The M4 competition identified innovative forecasting methods, advancing the theory and practice of forecasting. One of the most promising innovations of M4 was the utilization of cross-learning approaches that allow models to learn from multiple series how to accurately predict individual ones. In this paper, we investigate the potential of cross-learning by developing various neural network models that adopt such an approach, and we compare their accuracy to that of traditional models that are trained in a series-by-series fashion. Our empirical evaluation, which is based on the M4 monthly data, confirms that cross-learning is a promising alternative to traditional forecasting, at least when appropriate strategies for extracting information from large, diverse time series data sets are considered. Ways of combining traditional with cross-learning methods are also examined in order to initiate further research in the field.  相似文献   

15.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings.  相似文献   

16.
    
Many regions on earth face daily limitations in the quantity and quality of the water resources available. As a result, it is necessary to implement reliable methodologies for water consumption forecasting that will enable the better management and planning of water resources. This research analyses, for the first time, a large database containing data from 2 million water meters in 274 unique postal codes, in one of the most densely populated areas of Europe, which faces issues of droughts and overconsumption in the hot summer months. Using the R programming language, we built and tested three alternative forecasting methodologies, employing univariate forecasting techniques including a machine-learning algorithm, with very promising results.  相似文献   

17.
    
Factor modeling is a powerful statistical technique that permits common dynamics to be captured in a large panel of data with a few latent variables, or factors, thus alleviating the curse of dimensionality. Despite its popularity and widespread use for various applications ranging from genomics to finance, this methodology has predominantly remained linear. This study estimates factors nonlinearly through the kernel method, which allows for flexible nonlinearities while still avoiding the curse of dimensionality. We focus on factor-augmented forecasting of a single time series in a high-dimensional setting, known as diffusion index forecasting in macroeconomics literature. Our main contribution is twofold. First, we show that the proposed estimator is consistent and it nests the linear principal component analysis estimator as well as some nonlinear estimators introduced in the literature as specific examples. Second, our empirical application to a classical macroeconomic dataset demonstrates that this approach can offer substantial advantages over mainstream methods.  相似文献   

18.
The M4 competition is the continuation of three previous competitions started more than 45 years ago whose purpose was to learn how to improve forecasting accuracy, and how such learning can be applied to advance the theory and practice of forecasting. The purpose of M4 was to replicate the results of the previous ones and extend them into three directions: First significantly increase the number of series, second include Machine Learning (ML) forecasting methods, and third evaluate both point forecasts and prediction intervals. The five major findings of the M4 Competitions are: 1. Out Of the 17 most accurate methods, 12 were “combinations” of mostly statistical approaches. 2. The biggest surprise was a “hybrid” approach that utilized both statistical and ML features. This method’s average sMAPE was close to 10% more accurate than the combination benchmark used to compare the submitted methods. 3. The second most accurate method was a combination of seven statistical methods and one ML one, with the weights for the averaging being calculated by a ML algorithm that was trained to minimize the forecasting. 4. The two most accurate methods also achieved an amazing success in specifying the 95% prediction intervals correctly. 5. The six pure ML methods performed poorly, with none of them being more accurate than the combination benchmark and only one being more accurate than Naïve2. This paper presents some initial results of M4, its major findings and a logical conclusion. Finally, it outlines what the authors consider to be the way forward for the field of forecasting.  相似文献   

19.
    
We have been publishing real-time forecasts of confirmed cases and deaths from coronavirus disease 2019 (COVID-19) since mid-March 2020 (published at www.doornik.com/COVID-19). These forecasts are short-term statistical extrapolations of past and current data. They assume that the underlying trend is informative regarding short-term developments but without requiring other assumptions about how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is spreading, or whether preventative policies are effective. Thus, they are complementary to the forecasts obtained from epidemiological models.The forecasts are based on extracting trends from windows of data using machine learning and then computing the forecasts by applying some constraints to the flexible extracted trend. These methods have been applied previously to various other time series data and they performed well. They have also proved effective in the COVID-19 setting where they provided better forecasts than some epidemiological models in the earlier stages of the pandemic.  相似文献   

20.
In this work we consider the forecasting of macroeconomic variables during an economic crisis. The focus is on a specific class of models, the so-called single hidden-layer feed-forward autoregressive neural network models. What makes these models interesting in the present context is the fact that they form a class of universal approximators and may be expected to work well during exceptional periods such as major economic crises. Neural network models are often difficult to estimate, and we follow the idea of White (2006) of transforming the specification and nonlinear estimation problem into a linear model selection and estimation problem. To this end, we employ three automatic modelling devices. One of them is White’s QuickNet, but we also consider Autometrics, which is well known to time series econometricians, and the Marginal Bridge Estimator, which is better known to statisticians. The performances of these three model selectors are compared by looking at the accuracy of the forecasts of the estimated neural network models. We apply the neural network model and the three modelling techniques to monthly industrial production and unemployment series from the G7 countries and the four Scandinavian ones, and focus on forecasting during the economic crisis 2007–2009. The forecast accuracy is measured using the root mean square forecast error. Hypothesis testing is also used to compare the performances of the different techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号