共查询到20条相似文献,搜索用时 0 毫秒
1.
This article considers the asymptotic estimation theory for the proportion in randomized response survey usinguncertain prior information (UPI) about the true proportion parameter which is assumed to be available on the basis of some sort of realistic conjecture. Three
estimators, namely, the unrestricted estimator, the shrinkage restricted estimator and an estimator based on a preliminary
test, are proposed. Their asymptotic mean squared errors are derived and compared. The relative dominance picture of the estimators
is presented. 相似文献
2.
Estimation of copula-based semiparametric time series models 总被引:8,自引:0,他引:8
This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric marginal distributions and parametric copula functions, while the copulas capture all the scale-free temporal dependence of the processes. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic properties are established under easily verifiable conditions. These results are used to obtain root-n consistent and asymptotically normal estimators of important features of the transition distribution such as the (nonlinear) conditional moments and conditional quantiles. The semiparametric conditional quantile estimators are automatically monotonic across quantiles, which is attractive for portfolio conditional value-at-risk calculations. 相似文献
3.
《International Journal of Forecasting》2023,39(3):1185-1204
This paper proposes LASSO estimation specific for panel vector autoregressive (PVAR) models. The penalty term allows for shrinkage for different lags, for shrinkage towards homogeneous coefficients across panel units, for penalization of lags of variables belonging to another cross-sectional unit, and for varying penalization across equations. The penalty parameters therefore build on time series and cross-sectional properties that are commonly found in PVAR models. Simulation results point towards advantages of using the proposed LASSO for PVAR models over ordinary least squares in terms of forecast accuracy. An empirical forecasting application including 20 countries supports these findings. 相似文献
4.
Liqun Wang 《Journal of econometrics》2011,165(1):30-44
This paper deals with a nonlinear errors-in-variables model where the distributions of the unobserved predictor variables and of the measurement errors are nonparametric. Using the instrumental variable approach, we propose method of moments estimators for the unknown parameters and simulation-based estimators to overcome the possible computational difficulty of minimizing an objective function which involves multiple integrals. Both estimators are consistent and asymptotically normally distributed under fairly general regularity conditions. Moreover, root-n consistent semiparametric estimators and a rank condition for model identifiability are derived using the combined methods of the nonparametric technique and Fourier deconvolution. 相似文献
5.
As a generalization of the factor-augmented VAR (FAVAR) and of the Error Correction Model (ECM), Banerjee and Marcellino (2009) introduced the Factor-augmented Error Correction Model (FECM). The FECM combines error-correction, cointegration and dynamic factor models, and has several conceptual advantages over the standard ECM and FAVAR models. In particular, it uses a larger dataset than the ECM and incorporates the long-run information which the FAVAR is missing because of its specification in differences. In this paper, we examine the forecasting performance of the FECM by means of an analytical example, Monte Carlo simulations and several empirical applications. We show that FECM generally offers a higher forecasting precision relative to the FAVAR, and marks a useful step forward for forecasting with large datasets. 相似文献
6.
We consider the problem of estimating R=P(X<Y) where X and Y have independent exponential distributions with parameters and respectively and a common location parameter . Assuming that there is a prior guess or estimate R0, we develop various shrinkage estimators of R that incorporate this prior information. The performance of the new estimators is investigated and compared with the maximum likelihood estimator using Monte Carlo methods. It is found that some of these estimators are very successful in taking advantage of the prior estimate available.Acknowledgments. The authors are grateful to the editor and to the referees for their constructive comments that resulted in a substantial improvement of the paper. 相似文献
7.
In this paper we propose an approach to both estimate and select unknown smooth functions in an additive model with potentially many functions. Each function is written as a linear combination of basis terms, with coefficients regularized by a proper linearly constrained Gaussian prior. Given any potentially rank deficient prior precision matrix, we show how to derive linear constraints so that the corresponding effect is identified in the additive model. This allows for the use of a wide range of bases and precision matrices in priors for regularization. By introducing indicator variables, each constrained Gaussian prior is augmented with a point mass at zero, thus allowing for function selection. Posterior inference is calculated using Markov chain Monte Carlo and the smoothness in the functions is both the result of shrinkage through the constrained Gaussian prior and model averaging. We show how using non-degenerate priors on the shrinkage parameters enables the application of substantially more computationally efficient sampling schemes than would otherwise be the case. We show the favourable performance of our approach when compared to two contemporary alternative Bayesian methods. To highlight the potential of our approach in high-dimensional settings we apply it to estimate two large seemingly unrelated regression models for intra-day electricity load. Both models feature a variety of different univariate and bivariate functions which require different levels of smoothing, and where component selection is meaningful. Priors for the error disturbance covariances are selected carefully and the empirical results provide a substantive contribution to the electricity load modelling literature in their own right. 相似文献
8.
We consider nonparametric/semiparametric estimation and testing of econometric models with data dependent smoothing parameters. Most of the existing works on asymptotic distributions of a nonparametric/semiparametric estimator or a test statistic are based on some deterministic smoothing parameters, while in practice it is important to use data-driven methods to select the smoothing parameters. In this paper we give a simple sufficient condition that can be used to establish the first order asymptotic equivalence of a nonparametric estimator or a test statistic with stochastic smoothing parameters to those using deterministic smoothing parameters. We also allow for general weakly dependent data. 相似文献
9.
Summary: Suppose for a homogeneous linear unbiased function of the sampled first stage unit (fsu)-values taken as an estimator of
a survey population total, the sampling variance is expressed as a homogeneous quadratic function of the fsu-values. When
the fsu-values are not ascertainable but unbiased estimators for them are separately available through sampling in later stages
and substituted into the estimator, Raj (1968) gave a simple variance estimator formula for this multi-stage estimator of
the population total. He requires that the variances of the estimated fsu-values in sampling at later stages and their unbiased
estimators are available in certain `simple forms'. For the same set-up Rao (1975) derived an alternative variance estimator
when the later stage sampling variances have more ‘complex forms’. Here we pursue with Raj's (1968) simple forms to derive
a few alternative variance and mean square error estimators when the condition of homogeneity or unbiasedness in the original
estimator of the total is relaxed and the variance of the original estimator is not expressed as a quadratic form.
We illustrate a particular three-stage sampling strategy and present a simulation-based numerical exercise showing the relative
efficacies of two alternative variance estimators.
Received: 19 February 1999 相似文献
10.
This paper develops an exact maximum likelihood technique for estimating linear models with second-order autoregressive errors, which utilizes the full set of observations, and explicitly constrains the estimates of the error process to satisfy a priori stationarity conditions. A non- linear solution technique which is new to econometrics and works very efficiently is put forward as part of the estimating procedure. Empirical results are presented which emphasize the importance of utilizing the full set of observations and the associated stationarity restrictions. 相似文献
11.
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing non-stochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series nonparametric estimates of the score function are employed in adaptive estimates of parameters of interest. These estimates are as efficient as the ones based on a correct form, in particular they are more efficient than pseudo-Gaussian maximum likelihood estimates at non-Gaussian distributions. Two different adaptive estimates are considered, relying on somewhat different regularity conditions. A Monte Carlo study of finite sample performance is included. 相似文献
12.
This paper proposes a class of locally stationary diffusion processes. The model has a time varying but locally linear drift and a volatility coefficient that is allowed to vary over time and space. The model is semiparametric because we allow these functions to be unknown and the innovation process is parametrically specified, indeed completely known. We propose estimators of all the unknown quantities based on long span data. Our estimation method makes use of the property of local stationarity. We establish asymptotic theory for the proposed estimators as the time span increases, so we do not rely on infill asymptotics. We apply this method to interest rate data to illustrate the validity of our model. Finally, we present a simulation study to provide the finite-sample performance of the proposed estimators. 相似文献
13.
The strong consistency and asymptotic normality of the Whittle estimate of the parameters in a class of exponential volatility processes are established. Our main focus here are the EGARCH model of [Nelson, D. 1991. Conditional heteroscedasticity in asset pricing: A new approach. Econometrica 59, 347–370] and other one-shock models such as the GJR model of [Glosten, L., Jaganathan, R., Runkle, D., 1993. On the relation between the expected value and the volatility of the nominal excess returns on stocks. Journal of Finance, 48, 1779–1801], but two-shock models, such as the SV model of [Taylor, S. 1986. Modelling Financial Time Series. Wiley, Chichester, UK], are also comprised by our assumptions. The variable of interest might not have finite fractional moment of any order and so, in particular, finite variance is not imposed. We allow for a wide range of degrees of persistence of shocks to conditional variance, allowing for both short and long memory. 相似文献
14.
We propose a multivariate generalization of the multiplicative volatility model of Engle and Rangel (2008), which has a nonparametric long run component and a unit multivariate GARCH short run dynamic component. We suggest various kernel-based estimation procedures for the parametric and nonparametric components, and derive the asymptotic properties thereof. For the parametric part of the model, we obtain the semiparametric efficiency bound. Our method is applied to a bivariate stock index series. We find that the univariate model of Engle and Rangel (2008) appears to be violated in the data whereas our multivariate model is more consistent with the data. 相似文献
15.
Efficient estimation of general dynamic models with a continuum of moment conditions 总被引:1,自引:0,他引:1
Marine Carrasco Mikhail Chernov Jean-Pierre Florens Eric Ghysels 《Journal of econometrics》2007,140(2):529-573
There are two difficulties with the implementation of the characteristic function-based estimators. First, the optimal instrument yielding the ML efficiency depends on the unknown probability density function. Second, the need to use a large set of moment conditions leads to the singularity of the covariance matrix. We resolve the two problems in the framework of GMM with a continuum of moment conditions. A new optimal instrument relies on the double indexing and, as a result, has a simple exponential form. The singularity problem is addressed via a penalization term. We introduce HAC-type estimators for non-Markov models. A simulated method of moments is proposed for non-analytical cases. 相似文献
16.
With the concept of trend inflation now being widely understood to be important to the accuracy of longer-term inflation forecasts, this paper assesses alternative models of trend inflation. Reflecting the models which are common in reduced-form inflation modeling and forecasting, we specify a range of models of inflation that incorporate different trend specifications. We compare the models on the basis of their accuracies in out-of-sample forecasting, both point and density. Our results show that it is difficult to say that any one model of trend inflation is the best. Several different trend specifications seem to be about equally accurate, and the relative accuracy is somewhat prone to instabilities over time. 相似文献
17.
Past research on time-varying sales-response models emphasized the application of different estimation techniques in examining variation in advertising effectiveness over time. This study focuses on comparing sales forecasts using constant and stochastic coefficients sales-response models. Selected constant and stochastic coefficient models are applied to six sets of bimonthly and one set of annual advertising and sales data to assess forecasting accuracy for time horizons of various lengths. Results show improved forecasting accuracy for a first-order autoregressive stochastic coefficient model, particularly in short-run forecasting applications. 相似文献
18.
Tobias Rydén 《Metrika》1998,47(1):119-145
For a recursive maximum-likelihood estimator with step lengths decaying as 1/n, an adaptive matrix needs to be incorporated to obtain asymptotic efficiency. Ideally, this matrix should be chosen as the inverse Fisher information matrix, which is usually very difficult to compute for incomplete data models. In this paper we give conditions under which the observed information can be incorporated into the recursive procedure to yield an efficient estimator, and we also investigate the finite sample properties of these estimators by simulation. 相似文献
19.
We compare a number of methods that have been proposed in the literature for obtaining h-step ahead minimum mean square error forecasts for self-exciting threshold autoregressive (SETAR) models. These forecasts are compared to those from an AR model. The comparison of forecasting methods is made using Monte Carlo simulation. The Monte-Carlo method of calculating SETAR forecasts is generally at least as good as that of the other methods we consider. An exception is when the disturbances in the SETAR model come from a highly asymmetric distribution, when a Bootstrap method is to be preferred.An empirical application calculates multi-period forecasts from a SETAR model of US gross national product using a number of the forecasting methods. We find that whether there are improvements in forecast performance relative to a linear AR model depends on the historical epoch we select, and whether forecasts are evaluated conditional on the regime the process was in at the time the forecast was made. 相似文献