首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An important issue in models of technical efficiency measurement concerns the temporal behaviour of inefficiency. Consideration of dynamic models is necessary but inference in such models is complicated. In this paper we propose a stochastic frontier model that allows for technical inefficiency effects and dynamic technical inefficiency, and use Bayesian inference procedures organized around data augmentation techniques to provide inferences. Also provided are firm‐specific efficiency measures. The new methods are applied to a panel of large US commercial banks over the period 1989–2000. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group’s distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.  相似文献   

3.

The two-tier stochastic frontier model has seen widespread application across a range of social science domains. It is particularly useful in examining bilateral exchanges where unobserved side-specific information exists on both sides of the transaction. These buyer and seller specific informational aspects offer opportunities to extract surplus from the other side of the market, in combination also with uneven relative bargaining power. Currently, this model is hindered by the fact that identification and estimation relies on the potentially restrictive assumption that these factors are statistically independent. We present three different models for empirical application that allow for varying degrees of dependence across these latent informational/bargaining factors.

  相似文献   

4.
The classical stochastic frontier panel data models provide no mechanism to disentangle individual time invariant unobserved heterogeneity from inefficiency. Greene (2005a, b) proposed the so-called “true” fixed-effects specification that distinguishes these two latent components. However, due to the incidental parameters problem, his maximum likelihood estimator may lead to biased variance estimates. We propose two alternative estimators that achieve consistency for n with fixed T. Furthermore, we extend the Chen et al. (2014) results providing a feasible estimator when the inefficiency is heteroskedastic and follows a first-order autoregressive process. We investigate the behavior of the proposed estimators through Monte Carlo simulations showing good finite sample properties, especially in small samples. An application to hospitals’ technical efficiency illustrates the usefulness of the new approach.  相似文献   

5.
In this paper we discuss goodness of fit tests for the distribution of technical inefficiency in stochastic frontier models. If we maintain the hypothesis that the assumed normal distribution for statistical noise is correct, the assumed distribution for technical inefficiency is testable. We show that a goodness of fit test can be based on the distribution of estimated technical efficiency, or equivalently on the distribution of the composed error term. We consider both the Pearson χ 2 test and the Kolmogorov–Smirnov test. We provide simulation results to show the extent to which the tests are reliable in finite samples.  相似文献   

6.
A Bayesian estimator is proposed for a stochastic frontier model with errors in variables. The model assumes a truncated-normal distribution for the inefficiency and accommodates exogenous determinants of inefficiency. An empirical example of Tobin??s Q investment model is provided, in which the Q variable is known to suffer from measurement error. Results show that correcting for measurement error in the Q variable has an important effect on the estimation results.  相似文献   

7.
In most empirical studies, once the best model has been selected according to a certain criterion, subsequent analysis is conducted conditionally on the chosen model. In other words, the uncertainty of model selection is ignored once the best model has been chosen. However, the true data-generating process is in general unknown and may not be consistent with the chosen model. In the analysis of productivity and technical efficiencies in the stochastic frontier settings, if the estimated parameters or the predicted efficiencies differ across competing models, then it is risky to base the prediction on the selected model. Buckland et al. (Biometrics 53:603?C618, 1997) have shown that if model selection uncertainty is ignored, the precision of the estimate is likely to be overestimated, the estimated confidence intervals of the parameters are often below the nominal level, and consequently, the prediction may be less accurate than expected. In this paper, we suggest using the model-averaged estimator based on the multimodel inference to estimate stochastic frontier models. The potential advantages of the proposed approach are twofold: incorporating the model selection uncertainty into statistical inference; reducing the model selection bias and variance of the frontier and technical efficiency estimators. The approach is demonstrated empirically via the estimation of an Indian farm data set.  相似文献   

8.
Stochastic frontier models with autocorrelated inefficiency have been proposed in the past as a way of addressing the issue of temporal variation in firm-level efficiency scores. They are justified using an underlying model of dynamic firm behavior. In this paper we argue that these models could have radically different implications for the expected long-run efficiency scores in the presence of unobserved heterogeneity. The possibility of accounting for unobserved heterogeneity is explored. Random- and correlated random-effects dynamic stochastic frontier models are proposed and applied to a panel of US electric utilities.  相似文献   

9.
Previous work on stochastic production frontiers has generated a family of models, of varying degrees of complexity. Since this family is nested (in the sense that the more general models contain the less general), we can test the restrictions that distinguish the model. In this paper we provide tests of these restrictions, based on the results of estimating the simpler (restricted) models. Some of our tests are LM tests. However, in other cases the LM test fails, so we provide alternative simple tests.  相似文献   

10.
Estimation of the one sided error component in stochastic frontier models may erroneously attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However, unobserved inefficiency heterogeneity has been little explored. In this work, we propose to capture it through a random parameter which may affect the location, scale, or both parameters of a truncated normal inefficiency distribution using a Bayesian approach. Our findings using two real data sets, suggest that the inclusion of a random parameter in the inefficiency distribution is able to capture latent heterogeneity and can be used to validate the suitability of observed covariates to distinguish heterogeneity from inefficiency. Relevant effects are also found on separating and shrinking individual posterior efficiency distributions when heterogeneity affects the location and scale parameters of the one-sided error distribution, and consequently affecting the estimated mean efficiency scores and rankings. In particular, including heterogeneity simultaneously in both parameters of the inefficiency distribution in models that satisfy the scaling property leads to a decrease in the uncertainty around the mean scores and less overlapping of the posterior efficiency distributions, which provides both more reliable efficiency scores and rankings.  相似文献   

11.
When analyzing productivity and efficiency of firms, stochastic frontier models are very attractive because they allow, as in typical regression models, to introduce some noise in the Data Generating Process . Most of the approaches so far have been using very restrictive fully parametric specified models, both for the frontier function and for the components of the stochastic terms. Recently, local MLE approaches were introduced to relax these parametric hypotheses. In this work we show that most of the benefits of the local MLE approach can be obtained with less assumptions and involving much easier, faster and numerically more robust computations, by using nonparametric least-squares methods. Our approach can also be viewed as a semi-parametric generalization of the so-called “modified OLS” that was introduced in the parametric setup. If the final evaluation of individual efficiencies requires, as in the local MLE approach, the local specification of the distributions of noise and inefficiencies, it is shown that a lot can be learned on the production process without such specifications. Even elasticities of the mean inefficiency can be analyzed with unspecified noise distribution and a general class of local one-parameter scale family for inefficiencies. This allows to discuss the variation in inefficiency levels with respect to explanatory variables with minimal assumptions on the Data Generating Process.  相似文献   

12.
We consider a stochastic frontier model with error ε=v−uε=vu, where vv is normal and uu is half normal. We derive the distribution of the usual estimate of u,E(u|ε)u,E(u|ε). We show that as the variance of vv approaches zero, E(u|ε)−uE(u|ε)u converges to zero, while as the variance of vv approaches infinity, E(u|ε)E(u|ε) converges to E(u)E(u). We graph the density of E(u|ε)E(u|ε) for intermediate cases. To show that E(u|ε)E(u|ε) is a shrinkage of u towards its mean, we derive and graph the distribution of E(u|ε)E(u|ε) conditional on uu. We also consider the distribution of estimated inefficiency in the fixed-effects panel data setting.  相似文献   

13.
Journal of Productivity Analysis - This paper extends the fixed effect panel stochastic frontier models to allow group heterogeneity in the slope coefficients. We propose the first-difference...  相似文献   

14.
This paper is an empirical study of the uncertainty associated with technical efficiency estimates from stochastic frontier models. We show how to construct confidence intervals for estimates of technical efficiency levels under different sets of assumptions ranging from the very strong to the relatively weak. We demonstrate empirically how the degree of uncertainty associated with these estimates relates to the strength of the assumptions made and to various features of the data.  相似文献   

15.
Formulation and estimation of stochastic frontier production function models   总被引:22,自引:0,他引:22  
Previous studies of the so-called frontier production function have not utilized an adequate characterization of the disturbance term for such a model. In this paper we provide an appropriate specification, by defining the disturbance term as the sum of symmetric normal and (negative) half-normal random variables. Various aspects of maximum-likelihood estimation for the coefficients of a production function with an additive disturbance term of this sort are then considered.  相似文献   

16.
Traditional panel stochastic frontier models do not distinguish between unobserved individual heterogeneity and inefficiency. They thus force all time-invariant individual heterogeneity into the estimated inefficiency. Greene (2005) proposes a true fixed-effect stochastic frontier model which, in theory, may be biased by the incidental parameters problem. The problem usually cannot be dealt with by model transformations owing to the nonlinearity of the stochastic frontier model. In this paper, we propose a class of panel stochastic frontier models which create an exception. We show that first-difference and within-transformation can be analytically performed on this model to remove the fixed individual effects, and thus the estimator is immune to the incidental parameters problem. Consistency of the estimator is obtained by either N→∞N or T→∞T, which is an attractive property for empirical researchers.  相似文献   

17.
The iterative algorithm suggested by Greene (1982) for the estimation of stochastic frontier production models does not necessarily solve the likelihood equations. Corrected iterative algorithms which generalize Fair's method (1977) and solve the likelihood equations are derived. These algorithms are compared with the Newton method in an empirical case. The Newton method is more time saving than these algorithms.  相似文献   

18.
The effect of aggregation on estimates of stochastic frontier functions is considered. Inefficiency is assumed associated with the individual units being aggregated. In this case, the aggregated data have a closed skew normal distribution. Estimating the parameters of a closed skew normal distribution is difficult and so we focus mostly on the biases created by ignoring the fact that the data are aggregated. The conclusions are based on both analytical and Monte Carlo results. When data for firms are aggregates over smaller units and the inefficiency is associated with the units and not the firm, empirical work that does not consider the effect of aggregation will attribute the inefficiency of large firms to diseconomies of scale.  相似文献   

19.
The paper is concerned with several kinds of stochastic frontier models whose likelihood function is not available in closed form. First, with output-oriented stochastic frontier models whose one-sided errors have a distribution other than the standard ones (exponential or half-normal). The gamma and beta distributions are leading examples. Second, with input-oriented stochastic frontier models which are common in theoretical discussions but not in econometric applications. Third, with two-tiered stochastic frontier models when the one-sided error components follow gamma distributions. Fourth, with latent class models with gamma distributed one-sided error terms. Fifth, with models whose two-sided error component is distributed as stable Paretian and the one-sided error is gamma. The principal aim is to propose approximations to the density of the composed error based on the inversion of the characteristic function (which turns out to be manageable) using the Fourier transform. Procedures that are based on the asymptotic normal form of the log-likelihood function and have arbitrary degrees of asymptotic efficiency are also proposed, implemented and evaluated in connection with output-oriented stochastic frontiers. The new methods are illustrated using data for US commercial banks, electric utilities, and a sample from the National Youth Longitudinal Survey.  相似文献   

20.
Most stochastic frontier models have focused on estimating average productive efficiency across all firms. The failure to estimate firm-specific effiicency has been regarded as a major limitation of previous stochastic frontier models. In this paper, we measure firm-level efficiency using panel data, and examine its finite sample distribution over a wide range of the parameter and model space. We also investigate the performance of the stochastic frontier approach using three estimators: maximum likelihood, generalized least squares and dummy variables (or the within estimator). Our results indicate that the performance of the stochastic frontier approach is sensitive to the form of the underlying technology and its complexity. The results appear to be quite stable across estimators. The within estimatoris preferred, however, because of weak assumptions and relative computational ease.The refereeing process of this paper was handled through J. van den Broeck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号