共查询到20条相似文献,搜索用时 0 毫秒
1.
The present paper addresses the problem of computing implied volatilities of options written on a domestic asset based on implied volatilities of options on the same asset expressed in a foreign currency and the exchange rate. It proposes an original method together with explicit formulae to compute the at-the-money implied volatility, the smile's skew, convexity, and term structure for short maturities. The method is completely free of any model specification or Markov assumption; it only assumes that jumps are not present. We also investigate how the method performs on the particular example of the currency triplet dollar, euro, yen. We find a very satisfactory agreement between our formulae and the market at one week and one month maturities. 相似文献
2.
AbstractWe consider the three-factor double mean reverting (DMR) option pricing model of Gatheral [Consistent Modelling of SPX and VIX Options, 2008], a model which can be successfully calibrated to both VIX options and SPX options simultaneously. One drawback of this model is that calibration may be slow because no closed form solution for European options exists. In this paper, we apply modified versions of the second-order Monte Carlo scheme of Ninomiya and Victoir [Appl. Math. Finance, 2008, 15, 107–121], and compare these to the Euler–Maruyama scheme with full truncation of Lord et al. [Quant. Finance, 2010, 10(2), 177–194], demonstrating on the one hand that fast calibration of the DMR model is practical, and on the other that suitably modified Ninomiya–Victoir schemes are applicable to the simulation of much more complicated time-homogeneous models than may have been thought previously. 相似文献
3.
This paper considers interest rate term structure models in a market attracting both continuous and discrete types of uncertainty. The event-driven noise is modelled by a Poisson random measure. Using as numeraire the growth optimal portfolio, interest rate derivatives are priced under the real-world probability measure. In particular, the real-world dynamics of the forward rates are derived and, for specific volatility structures, finite-dimensional Markovian representations are obtained. Furthermore, allowing for a stochastic short rate in a non-Markovian setting, a class of tractable affine term structures is derived where an equivalent risk-neutral probability measure may not exist. 相似文献
4.
Yacin Jerbi 《Quantitative Finance》2013,13(12):2041-2052
In this paper, as a generalization of the Black–Scholes (BS) model, we elaborate a new closed-form solution for a uni-dimensional European option pricing model called the J-model. This closed-form solution is based on a new stochastic process, called the J-process, which is an extension of the Wiener process satisfying the martingale property. The J-process is based on a new statistical law called the J-law, which is an extension of the normal law. The J-law relies on four parameters in its general form. It has interesting asymmetry and tail properties, allowing it to fit the reality of financial markets with good accuracy, which is not the case for the normal law. Despite the use of one state variable, we find results similar to those of Heston dealing with the bi-dimensional stochastic volatility problem for pricing European calls. Inverting the BS formula, we plot the smile curve related to this closed-form solution. The J-model can also serve to determine the implied volatility by inverting the J-formula and can be used to price other kinds of options such as American options. 相似文献
5.
Simona Sanfelici 《Quantitative Finance》2013,13(1):95-110
We consider the option pricing model proposed by Mancino and Ogawa, where the implementation of dynamic hedging strategies has a feedback impact on the price process of the underlying asset. We present numerical results showing that the smile and skewness patterns of implied volatility can actually be reproduced as a consequence of dynamical hedging. The simulations are performed using a suitable semi-implicit finite difference method. Moreover, we perform a calibration of the nonlinear model to market data and we compare it with more popular models, such as the Black–Scholes formula, the Jump-Diffusion model and Heston's model. In judging the alternative models, we consider the following issues: (i) the consistency of the implied structural parameters with the times-series data; (ii) out-of-sample pricing; and (iii) parameter uniformity across different moneyness and maturity classes. Overall, nonlinear feedback due to hedging strategies can, at least in part, contribute to the explanation from a theoretical and quantitative point of view of the strong pricing biases of the Black–Scholes formula, although stochastic volatility effects are more important in this regard. 相似文献
6.
S. Dyrting 《Quantitative Finance》2013,13(6):663-676
Finite difference methods are a popular technique for pricing American options. Since their introduction to finance by Brennan and Schwartz their use has spread from vanilla calls and puts on one stock to path-dependent and exotic options on multiple assets. Despite the breadth of the problems they have been applied to, and the increased sophistication of some of the newer techniques, most approaches to pricing equity options have not adequately addressed the issues of unbounded computational domains and divergent diffusion coefficients. In this article it is shown that these two problems are related and can be overcome using multiple grids. This new technique allows options to be priced for all values of the underlying, and is illustrated using standard put options and the call on the maximum of two stocks. For the latter contract, I also derive a characterization of the asymptotic continuation region in terms of a one-dimensional option pricing problem, and give analytic formulae for the perpetual case. 相似文献
7.
Ryan McCrickerd 《Quantitative Finance》2013,13(11):1877-1886
The rough Bergomi model, introduced by Bayer et al. [Quant. Finance, 2016, 16(6), 887–904], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model’s calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions—roughly 20 times on average, across different correlation regimes. 相似文献
8.
When simulating discrete-time approximations of solutions of stochastic differential equations (SDEs), in particular martingales, numerical stability is clearly more important than some higher order of convergence. Discrete-time approximations of solutions of SDEs with multiplicative noise, similar to the Black–Scholes model, are widely used in simulation in finance. The stability criterion presented in this paper is designed to handle both scenario simulation and Monte Carlo simulation, i.e. both strong and weak approximations. Methods are identified that have the potential to overcome some of the numerical instabilities experienced when using the explicit Euler scheme. This is of particular importance in finance, where martingale dynamics arise frequently and the diffusion coefficients are often multiplicative. Stability regions for a range of schemes are visualized and analysed to provide a methodology for a better understanding of the numerical stability issues that arise from time to time in practice. The result being that schemes that have implicitness in the approximations of both the drift and the diffusion terms exhibit the largest stability regions. Most importantly, it is shown that by refining the time step size one can leave a stability region and may face numerical instabilities, which is not what one is used to experiencing in deterministic numerical analysis. 相似文献
9.
We discuss the application of gradient methods to calibrate mean reverting stochastic volatility models. For this we use formulas based on Girsanov transformations as well as a modification of the Bismut–Elworthy formula to compute the derivatives of certain option prices with respect to the parameters of the model by applying Monte Carlo methods. The article presents an extension of the ideas to apply Malliavin calculus methods in the computation of Greek's. 相似文献
10.
Gabriel G. Drimus 《Quantitative Finance》2013,13(11):1679-1694
In this paper we study the pricing and hedging of options on realized variance in the 3/2 non-affine stochastic volatility model by developing efficient transform-based pricing methods. This non-affine model gives prices of options on realized variance that allow upward-sloping implied volatility of variance smiles. Heston's model [Rev. Financial Stud., 1993, 6, 327–343], the benchmark affine stochastic volatility model, leads to downward-sloping volatility of variance smiles—in disagreement with variance markets in practice. Using control variates, we propose a robust method to express the Laplace transform of the variance call function in terms of the Laplace transform of the realized variance. The proposed method works in any model where the Laplace transform of realized variance is available in closed form. Additionally, we apply a new numerical Laplace inversion algorithm that gives fast and accurate prices for options on realized variance, simultaneously at a sequence of variance strikes. The method is also used to derive hedge ratios for options on variance with respect to variance swaps. 相似文献
11.
Financial time series have two features which, in many cases, prevent the use of conventional estimators of volatilities and correlations: leptokurtotic distributions and contamination of data with outliers. Other techniques are required to achieve stable and accurate results. In this paper, we review robust estimators for volatilities and correlations and identify those best suited for use in risk management. The selection criteria were that the estimator should be stable to both fractionally small departures for all data points (fat tails), and to fractionally large departures for a small number of data points (outliers). Since risk management typically deals with thousands of time series at once, another major requirement was the independence of the approach of any manual correction or data pre-processing. We recommend using volatility t-estimators, for which we derived the estimation error formula for the case when the exact shape of the data distribution is unknown. A convenient robust estimator for correlations is Kendall's tau, whose drawback is that it does not guarantee the positivity of the correlation matrix. We chose to use geometric optimization that overcomes this problem by finding the closest correlation matrix to a given matrix in terms of the Hadamard norm. We propose the weights for the norm and demonstrate the efficiency of the algorithm on large-scale problems. 相似文献
12.
Reiichiro Kawai 《Quantitative Finance》2013,13(5):597-606
In this paper, we develop a multivariate risk-neutral Lévy process model and discuss its applicability in the context of the volatility smile of multiple assets. Our formulation is based upon a linear combination of independent univariate Lévy processes and can easily be calibrated to a set of one-dimensional marginal distributions and a given linear correlation matrix. We derive conditions for our formulation and the associated calibration procedure to be well-defined and provide some examples associated with particular Lévy processes permitting a closed-form characteristic function. Numerical results of the option premiums on three currencies are presented to illustrate the effectiveness of our formulation with different linear correlation structures. 相似文献
13.
For financial risk management it is of vital interest to have good estimates for the correlations between the stocks. It has been found that the correlations obtained from historical data are covered by a considerable amount of noise, which leads to a substantial error in the estimation of the portfolio risk. A method to suppress this noise is power mapping. It raises the absolute value of each matrix element to a power q while preserving the sign. In this paper we use the Markowitz portfolio optimization as a criterion for the optimal value of q and find a K/T dependence, where K is the portfolio size and T the length of the time series. Both in numerical simulations and for real market data we find that power mapping leads to portfolios with considerably reduced risk. It compares well with another noise reduction method based on spectral filtering. A combination of both methods yields the best results. 相似文献
14.
Yao Tung Huang 《Quantitative Finance》2016,16(6):905-928
We present regression-based Monte Carlo simulation algorithm for solving the stochastic control models associated with pricing and hedging of the guaranteed lifelong withdrawal benefit (GLWB) in variable annuities, where the dynamics of the underlying fund value is assumed to evolve according to the stochastic volatility model. The GLWB offers a lifelong withdrawal benefit, even when the policy account value becomes zero, while the policyholder remains alive. Upon death, the remaining account value will be paid to the beneficiary as a death benefit. The bang-bang control strategy analysed under the assumption of maximization of the policyholder’s expected cash flow reduces the strategy space of optimal withdrawal policies to three choices: zero withdrawal, withdrawal at the contractual amount or complete surrender. The impact on the GLWB value under various withdrawal behaviours of the policyholder is examined. We also analyse the pricing properties of GLWB subject to different model parameter values and structural features. 相似文献
15.
We provide the first recursive quantization-based approach for pricing options in the presence of stochastic volatility. This method can be applied to any model for which an Euler scheme is available for the underlying price process and it allows one to price vanillas, as well as exotics, thanks to the knowledge of the transition probabilities for the discretized stock process. We apply the methodology to some celebrated stochastic volatility models, including the Stein and Stein [Rev. Financ. Stud. 1991, (4), 727–752] model and the SABR model introduced in Hagan et al. [Wilmott Mag., 2002, 84–108]. A numerical exercise shows that the pricing of vanillas turns out to be accurate; in addition, when applied to some exotics like equity-volatility options, the quantization-based method overperforms by far the Monte Carlo simulation. 相似文献
16.
In this paper it is proved that the Black–Scholes implied volatility satisfies a second order non-linear partial differential equation. The obtained PDE is then used to construct an algorithm for fast and accurate polynomial approximation for Black–Scholes implied volatility that improves on the existing numerical schemes from literature, both in speed and parallelizability. We also show that the method is applicable to other problems, such as approximation of implied Bachelier volatility. 相似文献
17.
Lars Stentoft 《Journal of Empirical Finance》2011,18(5):880-902
This paper considers discrete time GARCH and continuous time SV models and uses these for American option pricing. We first of all show that with a particular choice of framework the parameters of the SV models can be estimated using simple maximum likelihood techniques. We then perform a Monte Carlo study to examine their differences in terms of option pricing, and we study the convergence of the discrete time option prices to their implied continuous time values. Finally, a large scale empirical analysis using individual stock options and options on an index is performed comparing the estimated prices from discrete time models to the corresponding continuous time model prices. The results show that, while the overall differences in performance are small, for the in the money put options on individual stocks the continuous time SV models do generally perform better than the discrete time GARCH specifications. 相似文献
18.
Søren Kærgaard Slipsager 《Scandinavian actuarial journal》2018,2018(3):250-273
The purpose of this paper is to shed light on some of the flaws in the forecasting approach undertaken by the pension industry. Specifically, it considers the treatment of inflation and shows that the current modeling framework is too simplistic. I identify the flaws of the existing regulatory framework and provide an alternative full model framework constructed around the three-factor diffusion model recently proposed by the Danish Society of Actuaries. By use of a simulation study I compare the deterministic inflation scheme applied in the industry to a stochastic scheme and show that the real value of the pension saver’s investment portfolio at retirement is highly dependent on the inflation scheme. As the deterministic scheme does not take state variable correlations into account it overestimates the expected portfolio value in real terms compared to the stochastic scheme. Moreover, the deterministic scheme gives rise to a more heavy-tailed distribution implying a misestimation of downside risk and upside potential. Finally, it is shown in a realistic case study that the pension saver’s expected retirement payout profile is heavily affected. 相似文献
19.
Anthonie W. van der Stoep Lech A. Grzelak Cornelis W. Oosterlee 《Quantitative Finance》2017,17(9):1347-1366
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899–1922], Piterbarg [Risk, 2007, April, 84–89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61–66]—and the local volatility model incorporating stochastic interest rates—see e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66–71], Deelstra and Rayée [Appl. Math. Finance, 2012, 1–23], Ren et al. [Risk, 2007, 20, 138–143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and ‘cheap to evaluate’ approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005–1034], [SIAM J. Sci. Comput., 2005, 27, 1118–1139], [Math. Models Methods Appl. Sci., 2012, 22, 1–33], [SIAM J. Numer. Anal., 2008, 46, 2309–2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1–19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast. 相似文献
20.
Klaus Schmitz Abe 《Quantitative Finance》2013,13(9):1379-1392
Today, better numerical approximations are required for multi-dimensional SDEs to improve on the poor performance of the standard Monte Carlo pricing method. With this aim in mind, this paper presents a method (MSL-MC) to price exotic options using multi-dimensional SDEs (e.g. stochastic volatility models). Usually, it is the weak convergence property of numerical discretizations that is most important, because, in financial applications, one is mostly concerned with the accurate estimation of expected payoffs. However, in the recently developed Multilevel Monte Carlo path simulation method (ML-MC), the strong convergence property plays a crucial role. We present a modification to the ML-MC algorithm that can be used to achieve better savings. To illustrate these, various examples of exotic options are given using a wide variety of payoffs, stochastic volatility models and the new Multischeme Multilevel Monte Carlo method (MSL-MC). For standard payoffs, both European and Digital options are presented. Examples are also given for complex payoffs, such as combinations of European options (Butterfly Spread, Strip and Strap options). Finally, for path-dependent payoffs, both Asian and Variance Swap options are demonstrated. This research shows how the use of stochastic volatility models and the θ scheme can improve the convergence of the MSL-MC so that the computational cost to achieve an accuracy of O(ε) is reduced from O(ε?3) to O(ε?2) for a payoff under global and non-global Lipschitz conditions. 相似文献