首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Realized variance option and options on quadratic variation normalized to unit expectation are analysed for the property of monotonicity in maturity for call options at a fixed strike. When this condition holds the risk-neutral densities are said to be increasing in the convex order. For Lévy processes, such prices decrease with maturity. A time series analysis of squared log returns on the S&P 500 index also reveals such a decrease. If options are priced to a slightly increasing level of acceptability, then the resulting risk-neutral densities can be increasing in the convex order. Calibrated stochastic volatility models yield possibilities in both directions. Finally, we consider modeling strategies guaranteeing an increase in convex order for the normalized quadratic variation. These strategies model instantaneous variance as a normalized exponential of a Lévy process. Simulation studies suggest that other transformations may also deliver an increase in the convex order.  相似文献   

2.
In this paper, we develop a multivariate risk-neutral Lévy process model and discuss its applicability in the context of the volatility smile of multiple assets. Our formulation is based upon a linear combination of independent univariate Lévy processes and can easily be calibrated to a set of one-dimensional marginal distributions and a given linear correlation matrix. We derive conditions for our formulation and the associated calibration procedure to be well-defined and provide some examples associated with particular Lévy processes permitting a closed-form characteristic function. Numerical results of the option premiums on three currencies are presented to illustrate the effectiveness of our formulation with different linear correlation structures.  相似文献   

3.
The goal of the paper is to show that some types of Lévy processes such as the hyperbolic motion and the CGMY are particularly suitable for asset price modelling and option pricing. We wish to review some fundamental mathematic properties of Lévy distributions, such as the one of infinite divisibility, and how they translate observed features of asset price returns. We explain how these processes are related to Brownian motion, the central process in finance, through stochastic time changes which can in turn be interpreted as a measure of the economic activity. Lastly, we focus on two particular classes of pure jump Lévy processes, the generalized hyperbolic model and the CGMY models, and report on the goodness of fit obtained both on stock prices and option prices.  相似文献   

4.
We derive efficient and accurate analytical pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes. By extending the conditioning variable approach, we derive the lower bound on the Asian option price and construct an upper bound based on the sharp lower bound. We also consider the general partially exact and bounded (PEB) approximations, which include the sharp lower bound and partially conditional moment matching approximation as special cases. The PEB approximations are known to lie between a sharp lower bound and an upper bound. Our numerical tests show that the PEB approximations to discrete arithmetic Asian option prices can produce highly accurate approximations when compared to other approximation methods. Our proposed approximation methods can be readily applied to pricing Asian options under most common types of underlying asset price processes, like the Heston stochastic volatility model nested in the class of time-changed Lévy processes with the leverage effect.  相似文献   

5.
In this paper we propose a transform method to compute the prices and Greeks of barrier options driven by a class of Lévy processes. We derive analytical expressions for the Laplace transforms in time of the prices and sensitivities of single barrier options in an exponential Lévy model with hyper-exponential jumps. Inversion of these single Laplace transforms yields rapid, accurate results. These results are employed to construct an approximation of the prices and sensitivities of barrier options in exponential generalized hyper-exponential Lévy models. The latter class includes many of the Lévy models employed in quantitative finance such as the variance gamma (VG), KoBoL, generalized hyperbolic, and the normal inverse Gaussian (NIG) models. Convergence of the approximating prices and sensitivities is proved. To provide a numerical illustration, this transform approach is compared with Monte Carlo simulation in cases where the driving process is a VG and a NIG Lévy process. Parameters are calibrated to Stoxx50E call options.  相似文献   

6.
For decades, financial institutions have been very motivated in creating structured high-yield financial products, especially in the economic environment of lower interest rates. Reverse convertible notes (RCNs) are the type of financial instruments, which in recent years first in Europe and then in the US – have become highly desirable financial structured products. They are complex financial structured products because they are neither plain bonds nor stocks. Instead, they are structured products embedding equity options, which involve a significant amount of asset returns' uncertainty. Given this fact, pricing of reverse convertible notes becomes a really big challenge, where both the general Black–Scholes option pricing model and the compound Poisson jump model which are designed to catch large crashes, are not suitable in valuing these kinds of products. In this paper, we propose a new asset-pricing framework for reverse convertible notes by extending the pure Brownian increments to Lévy jump risks for the underlying stock return movements. Our framework deals with time-changing volatilities of stock options with Lévy jump processes by considering the stocks' infinite-jump possibilities. We then use a discrete-time GARCH with time-changed dynamics Lévy Jump processes in order to derive the assets' valuations. The results from our new model are close to the market's valuations, especially with the normal-inverse-Gaussian model of the Lévy jump family.  相似文献   

7.
We study the behavior of the critical price of an American put option near maturity in an exponential Lévy model. In particular, we prove that in situations where the limit of the critical price is equal to the strike price, the rate of convergence to the limit is linear if and only if the underlying Lévy process has finite variation. In the case of infinite variation, a variety of rates of convergence can be observed: we prove that when the negative part of the Lévy measure exhibits an α-stable density near the origin, with 1<α<2, the convergence rate is ruled by $\theta^{1/\alpha}|\ln \theta|^{1-\frac{1}{\alpha}}$ , where θ is the time until maturity.  相似文献   

8.
We apply the multilevel Monte Carlo method for option pricing problems using exponential Lévy models with a uniform timestep discretisation. For lookback and barrier options, we derive estimates of the convergence rate of the error introduced by the discrete monitoring of the running supremum of a broad class of Lévy processes. We then use these to obtain upper bounds on the multilevel Monte Carlo variance convergence rate for the variance gamma, NIG and \(\alpha\)-stable processes. We also provide an analysis of a trapezoidal approximation for Asian options. Our method is illustrated by numerical experiments.  相似文献   

9.
This paper presents an approximate formula for pricing average options when the underlying asset price is driven by time-changed Lévy processes. Time-changed Lévy processes are attractive to use for a driving factor of underlying prices because the processes provide a flexible framework for generating jumps, capturing stochastic volatility as the random time change, and introducing the leverage effect. There have been very few studies dealing with pricing problems of exotic derivatives on time-changed Lévy processes in contrast to standard European derivatives. Our pricing formula is based on the Gram–Charlier expansion and the key of the formula is to find analytic treatments for computing the moments of the normalized average asset price. In numerical examples, we demonstrate that our formula give accurate values of average call options when adopting Heston’s stochastic volatility model, VG-CIR, and NIG-CIR models.  相似文献   

10.
We present new numerical schemes for pricing perpetual Bermudan and American options as well as α-quantile options. This includes a new direct calculation of the optimal exercise boundary for early-exercise options. Our approach is based on the Spitzer identities for general Lévy processes and on the Wiener–Hopf method. Our direct calculation of the price of α-quantile options combines for the first time the Dassios–Port–Wendel identity and the Spitzer identities for the extrema of processes. Our results show that the new pricing methods provide excellent error convergence with respect to computational time when implemented with a range of Lévy processes.  相似文献   

11.
12.
In this paper, we introduce a new class of models for the time evolution of the prices of call options of all strikes and maturities. We capture the information contained in the option prices in the density of some time-inhomogeneous Lévy measure (an alternative to the implied volatility surface), and we set this static code-book in motion by means of stochastic dynamics of It?’s type in a function space, creating what we call a tangent Lévy model. We then provide the consistency conditions, namely, we show that the call prices produced by a given dynamic code-book (dynamic Lévy density) coincide with the conditional expectations of the respective payoffs if and only if certain restrictions on the dynamics of the code-book are satisfied (including a drift condition à la HJM). We then provide an existence result, which allows us to construct a large class of tangent Lévy models, and describe a specific example for the sake of illustration.  相似文献   

13.
In this paper, we discuss a stochastic volatility model with a Lévy driving process and then apply the model to option pricing and hedging. The stochastic volatility in our model is defined by the continuous Markov chain. The risk-neutral measure is obtained by applying the Esscher transform. The option price using this model is computed by the Fourier transform method. We obtain the closed-form solution for the hedge ratio by applying locally risk-minimizing hedging.  相似文献   

14.
One method to compute the price of an arithmetic Asian option in a Lévy driven model is based on an exponential functional of the underlying Lévy process: If we know the distribution of the exponential functional, we can calculate the price of the Asian option via the inverse Laplace transform. In this paper, we consider pricing Asian options in a model driven by a general meromorphic Lévy process. We prove that the exponential functional is equal in distribution to an infinite product of independent beta random variables, and its Mellin transform can be expressed as an infinite product of gamma functions. We show that these results lead to an efficient algorithm for computing the price of the Asian option via the inverse Mellin–Laplace transform, and we compare this method with some other techniques.  相似文献   

15.
16.
Option pricing under the Lévy process has been considered an important research direction in the field of financial engineering, where a closed-form expression for the standard European option is available due to the existence of analytically tractable characteristic function according to the Lévy–Khinchin representation. However, this approach cannot be applied to exotic derivatives (such as barrier options) directly, although a large volume of exotic derivatives are actively traded in the current options market. An alternative approach is to solve the corresponding partial integro-differential equation (PIDE) numerically, which is, in fact, time-consuming and is not computationally tractable in general. In this paper, we apply the so-called homotopy analysis method (HAM) to solve the corresponding PIDE in a semi analytic form, being obtained from the following three steps: (1) Apply the Fourier transform to convert the PIDE to an ordinal differential equitation (ODE), and construct a differential system of ODEs. (2) Solve the system of ODEs, where each differential equation is shown to have an analytical solution. (3) Express the option price using the sum of infinite series, where each term may be expressed analytically and derived by applying Steps (1) and (2) recursively. To illustrate our technique more precisely, we take the variance gamma model as an example and provide the semi-analytic form. Numerical examples demonstrate a fast convergence of our proposed method to the prices of European and down-and-out call options with a few number of terms. Note that this method is easy to implement and can be applied to other types of options under general Lévy processes.  相似文献   

17.
This paper proposes a dynamic equilibrium model that can provide a unified explanation for the stylized facts observed in stock index markets such as the fat tails of the risk-neutral return distribution relative to the physical distribution, negative expected returns on deep OTM call options and negative realized variance risk premiums. In particular, we focus on the U-shaped pricing kernel against the stock index return, which is closely related to the negative call returns. We assume that the stock index return follows a time-changed Lévy process and that a representative investor has power utility over the aggregate consumption that forms a linear regression of the stock index return and its stochastic activity rate. This model offers a macroeconomic interpretation of the stylized facts from the perspective of the sensitivity of the activity rate and stock index return on aggregate consumption as well as the investor’s risk aversion.  相似文献   

18.
In this paper, we shall propose a useful approach to evaluate concretely the MEMM (minimal entropy martingale measure) for the typical geometric Lévy processes such as compound Poisson, stable, VG (Variance Gamma), CGMY (Carr-Geman-Madan-Yor), NIG (Normal Inverse Gaussian), etc. In addition, we shall estimate the parameters of geometric Lévy processes and value the European call option and Asian call option using the Nikkei financial data.  相似文献   

19.
In this paper, we address portfolio optimisation when stock prices follow general Lévy processes in the context of a pension accumulation scheme. The optimal portfolio weights are obtained in quasi-closed form and the optimal consumption in closed form. To solve the optimisation problem, we show how to switch back and forth between the stochastic differential and standard exponentials of the Lévy processes. We apply this procedure to both the Variance Gamma process and a Lévy process whose arrival rate of jumps exponentially decreases with size. We show through a numerical example that when jumps, and therefore asymmetry and leptokurtosis, are suitably taken into account, then the optimal portfolio share of the risky asset is around half that obtained in the Gaussian framework.  相似文献   

20.
In this paper we extend option pricing under Lévy dynamics, by assuming that the volatility of the Lévy process is stochastic. We, therefore, develop the analog of the standard stochastic volatility models, when the underlying process is not a standard (unit variance) Brownian motion, but rather a standardized Lévy process. We present a methodology that allows one to compute option prices, under virtually any set of diffusive dynamics for the parameters of the volatility process. First, we use ‘local consistency’ arguments to approximate the volatility process with a finite, but sufficiently dense Markov chain; we then use this regime switching approximation to efficiently compute option prices using Fourier inversion. A detailed example, based on a generalization of the popular stochastic volatility model of Heston (Rev Financial Stud 6 (1993) 327), is used to illustrate the implementation of the algorithms. Computer code is available at www.theponytail.net/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号