首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We prove that a multiple of a log contract prices a variance swap, under arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation with the driving Lévy process, subject to integrability conditions. We solve for the multiplier, which depends only on the Lévy process, not on the clock. In the case of an arbitrary continuous underlying returns process, the multiplier is 2, which recovers the standard no-jump variance swap pricing formula. In the presence of negatively skewed jump risk, however, we prove that the multiplier exceeds 2, which agrees with calibrations of time-changed Lévy processes to equity options data. Moreover, we show that discrete sampling increases variance swap values, under an independence condition; so if the commonly quoted multiple 2 undervalues the continuously sampled variance, then it undervalues even more the discretely sampled variance. Our valuations admit enforcement, in some cases, by hedging strategies which perfectly replicate variance swaps by holding log contracts and trading the underlying.  相似文献   

3.
For a family of functions G, we define the G-variation, which generalizes power variation; G-variation swaps, which pay the G-variation of the returns on an underlying share price F; and share-weighted G-variation swaps, which pay the integral of F with respect to G-variation. For instance, the case G(x)=x 2 reduces these notions to, respectively, quadratic variation, variance swaps, and gamma swaps. We prove that a multiple of a log contract prices a G-variation swap, and a multiple of an FlogF contract prices a share-weighted G-variation swap, under arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation with the Lévy driver, under integrability conditions. We solve for the multipliers, which depend only on the Lévy process, not on the clock. In the case of quadratic G and continuity of the underlying paths, each valuation multiplier is 2, recovering the standard no-jump variance and gamma-swap pricing results. In the presence of jump risk, however, we show that the valuation multiplier differs from 2, in a way that relates (positively or negatively, depending on the specified G) to the Lévy measure’s skewness. In three directions this work extends Carr–Lee–Wu, which priced only variance swaps. First, we generalize from quadratic variation to G-variation; second, we solve for not only unweighted but also share-weighted payoffs; and third, we apply these tools to analyze and minimize the risk in a family of hedging strategies for G-variation.  相似文献   

4.
In this paper, we introduce a new class of models for the time evolution of the prices of call options of all strikes and maturities. We capture the information contained in the option prices in the density of some time-inhomogeneous Lévy measure (an alternative to the implied volatility surface), and we set this static code-book in motion by means of stochastic dynamics of It?’s type in a function space, creating what we call a tangent Lévy model. We then provide the consistency conditions, namely, we show that the call prices produced by a given dynamic code-book (dynamic Lévy density) coincide with the conditional expectations of the respective payoffs if and only if certain restrictions on the dynamics of the code-book are satisfied (including a drift condition à la HJM). We then provide an existence result, which allows us to construct a large class of tangent Lévy models, and describe a specific example for the sake of illustration.  相似文献   

5.
In this paper we consider the problem of hedging an arithmetic Asian option with discrete monitoring in an exponential Lévy model by deriving backward recursive integrals for the price sensitivities of the option. The procedure is applied to the analysis of the performance of the delta and delta–gamma hedges in an incomplete market; particular attention is paid to the hedging error and the impact of model error on the quality of the chosen hedging strategy. The numerical analysis shows the impact of jump risk on the hedging error of the option position, and the importance of including traded options in the hedging portfolio for the reduction of this risk.  相似文献   

6.
《Quantitative Finance》2013,13(1):40-50
Time consistency of the models used is an important ingredient to improve risk management. The empirical investigation in this article gives evidence for some models driven by Lévy processes to be highly consistent. This means that they provide a good statistical fit of empirical distributions of returns not only on the timescale used for calibration but on various other timescales as well. As a result these models produce more reliable risk numbers and derivative prices.  相似文献   

7.
The Lévy term structure model due to Eberlein and Raible is extended to non-homogeneous driving processes. The classes of equivalent martingale and local martingale measures for various filtrations are characterized. It turns out that in a number of standard situations the martingale measure is unique.Received: May 2004, Mathematics Subject Classification (2000): 60H30, 91B28, 60G51JEL Classification: E43, G13Work supported in part by the European Communitys Human Potential Programme under contract HPRN-CT-2000-00100, DYNSTOCH.  相似文献   

8.
In this paper, we propose a multivariate asset model based on Lévy processes for pricing of products written on more than one underlying asset. Our construction is based on a two-factor representation of the dynamics of the asset log-returns. We investigate the properties of the model and introduce a multivariate generalization of some processes which are quite common in financial applications, such as subordinated Brownian motions, jump-diffusion processes and time-changed Lévy processes. Finally, we explore the issue of model calibration for the proposed setting and illustrate its robustness on a number of numerical examples.  相似文献   

9.
Lévy driven term structure models have become an important subject in the mathematical finance literature. This paper provides a comprehensive analysis of the Lévy driven Heath–Jarrow–Morton type term structure equation. This includes a full proof of existence and uniqueness in particular, which seems to have been lacking in the finance literature so far.   相似文献   

10.
We investigate the problem of calibrating an exponential Lévy model based on market prices of vanilla options. We show that this inverse problem is in general severely ill-posed and we derive exact minimax rates of convergence. The estimation procedure we propose is based on the explicit inversion of the option price formula in the spectral domain and a cut-off scheme for high frequencies as regularisation.  相似文献   

11.
We apply the multilevel Monte Carlo method for option pricing problems using exponential Lévy models with a uniform timestep discretisation. For lookback and barrier options, we derive estimates of the convergence rate of the error introduced by the discrete monitoring of the running supremum of a broad class of Lévy processes. We then use these to obtain upper bounds on the multilevel Monte Carlo variance convergence rate for the variance gamma, NIG and \(\alpha\)-stable processes. We also provide an analysis of a trapezoidal approximation for Asian options. Our method is illustrated by numerical experiments.  相似文献   

12.
We suggest two new fast and accurate methods, the fast Wiener–Hopf (FWH) method and the iterative Wiener–Hopf (IWH) method, for pricing barrier options for a wide class of Lévy processes. Both methods use the Wiener–Hopf factorization and the fast Fourier transform algorithm. We demonstrate the accuracy and fast convergence of both methods using Monte Carlo simulations and an accurate finite difference scheme, compare our results with those obtained by the Cont–Voltchkova method, and explain the differences in prices near the barrier. The first author is supported, in part, by grant RFBR 09-01-00781.  相似文献   

13.
The purpose of this paper is to introduce a stochastic volatility model for option pricing that exhibits Lévy jump behavior. For this model, we derive the general formula for a European call option. A well known particular case of this class of models is the Bates model, for which the jumps are modeled by a compound Poisson process with normally distributed jumps. Alternatively, we turn our attention to infinite activity jumps produced by a tempered stable process. Then we empirically compare the estimated log-return probability density and the option prices produced from this model to both the Bates model and the Black–Scholes model. We find that the tempered stable jumps describe more precisely market prices than compound Poisson jumps assumed in the Bates model.  相似文献   

14.
This paper presents an approximate formula for pricing average options when the underlying asset price is driven by time-changed Lévy processes. Time-changed Lévy processes are attractive to use for a driving factor of underlying prices because the processes provide a flexible framework for generating jumps, capturing stochastic volatility as the random time change, and introducing the leverage effect. There have been very few studies dealing with pricing problems of exotic derivatives on time-changed Lévy processes in contrast to standard European derivatives. Our pricing formula is based on the Gram–Charlier expansion and the key of the formula is to find analytic treatments for computing the moments of the normalized average asset price. In numerical examples, we demonstrate that our formula give accurate values of average call options when adopting Heston’s stochastic volatility model, VG-CIR, and NIG-CIR models.  相似文献   

15.
Adopting a constant elasticity of variance formulation in the context of a general Lévy process as the driving uncertainty we show that the presence of the leverage effect? ?One explanation of the documented negative relation between market volatilities and the level of asset prices (the ‘smile’ or ‘skew’), we term the ‘leverage effect’, argues that this negative relation reflects greater risk taking by the management, induced by a fall in the asset price, with a view of maximizing the option value of equity shareholders. in this form has the implication that asset price processes satisfy a scaling hypothesis. We develop forward partial integro-differential equations under a general Markovian setup, and show in two examples (both continuous and pure-jump Lévy) how to use them for option pricing when stock prices follow our leveraged Lévy processes. Using calibrated models we then show an example of simulation-based pricing and report on the adequacy of using leveraged Lévy models to value equity structured products.  相似文献   

16.
In this paper, we discuss a stochastic volatility model with a Lévy driving process and then apply the model to option pricing and hedging. The stochastic volatility in our model is defined by the continuous Markov chain. The risk-neutral measure is obtained by applying the Esscher transform. The option price using this model is computed by the Fourier transform method. We obtain the closed-form solution for the hedge ratio by applying locally risk-minimizing hedging.  相似文献   

17.
We give sufficient conditions for the existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.  相似文献   

18.
In this paper we present new pricing formulas for some Barrier style contracts of European type when the underlying process is driven by an important class of Lévy processes, which includes CGMY model, generalized hyperbolic Model and Meixner Model, when no symmetry properties are assumed, complementing in this way previous findings in Fajardo (J Bank Financ 53:179–187, 2015). Also, we show how to implement our new formulas.  相似文献   

19.
In this paper we offer a systematic survey and comparison of the Esscher martingale transform for linear processes, the Esscher martingale transform for exponential processes, and the minimal entropy martingale measure for exponential Lévy models, and present some new results in order to give a complete characterization of those classes of measures. We illustrate the results with several concrete examples in detail.  相似文献   

20.
In this paper we investigate alternative Lévy base correlation models that arise from the Gamma, Inverse Gaussian and CMY distribution classes. We compare these models with the basic (exponential) Lévy base correlation model and the classical Gaussian base correlation model. For all investigated models, the Lévy base correlation curve is significantly flatter than the corresponding Gaussian curve, which indicates better correspondence of the Lévy models with reality. Furthermore, we present the results of pricing bespoke tranchlets and comparing deltas of both standard and custom-made tranches under all the considered models. We focus on deltas with respect to the CDS index and individual CDSs, and the hedge ratio for hedging the equity tranche with the junior mezzanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号