首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a methodology for pricing basket options in the multivariate Variance Gamma model introduced in Luciano and Schoutens [Quant. Finance 6(5), 385–402]. The stock prices composing the basket are modelled by time-changed geometric Brownian motions with a common Gamma subordinator. Using the additivity property of comonotonic stop-loss premiums together with Gauss-Laguerre polynomials, we express the basket option price as a linear combination of Black & Scholes prices. Furthermore, our new basket option pricing formula enables us to calibrate the multivariate VG model in a fast way. As an illustration, we show that even in the constrained situation where the pairwise correlations between the Brownian motions are assumed to be equal, the multivariate VG model can closely match the observed Dow Jones index options.  相似文献   

2.
The rough Bergomi (rBergomi) model, introduced recently in Bayer et al. [Pricing under rough volatility. Quant. Finance, 2016, 16(6), 887–904], is a promising rough volatility model in quantitative finance. It is a parsimonious model depending on only three parameters, and yet remarkably fits empirical implied volatility surfaces. In the absence of analytical European option pricing methods for the model, and due to the non-Markovian nature of the fractional driver, the prevalent option is to use the Monte Carlo (MC) simulation for pricing. Despite recent advances in the MC method in this context, pricing under the rBergomi model is still a time-consuming task. To overcome this issue, we have designed a novel, hierarchical approach, based on: (i) adaptive sparse grids quadrature (ASGQ), and (ii) quasi-Monte Carlo (QMC). Both techniques are coupled with a Brownian bridge construction and a Richardson extrapolation on the weak error. By uncovering the available regularity, our hierarchical methods demonstrate substantial computational gains with respect to the standard MC method. They reach a sufficiently small relative error tolerance in the price estimates across different parameter constellations, even for very small values of the Hurst parameter. Our work opens a new research direction in this field, i.e. to investigate the performance of methods other than Monte Carlo for pricing and calibrating under the rBergomi model.  相似文献   

3.
The GARCH model has been very successful in capturing the serial correlation of asset return volatilities. As a result, applying the model to options pricing attracts a lot of attention. However, previous tree-based GARCH option pricing algorithms suffer from exponential running time, a cut-off maturity, inaccuracy, or some combination thereof. Specifically, this paper proves that the popular trinomial-tree option pricing algorithms of Ritchken and Trevor (Ritchken, P. and Trevor, R., Pricing options under generalized GARCH and stochastic volatility processes. J. Finance, , 54(1), 377–402.) and Cakici and Topyan (Cakici, N. and Topyan, K., The GARCH option pricing model: a lattice approach. J. Comput. Finance, , 3(4), 71–85.) explode exponentially when the number of partitions per day, n, exceeds a threshold determined by the GARCH parameters. Furthermore, when explosion happens, the tree cannot grow beyond a certain maturity date, making it unable to price derivatives with a longer maturity. As a result, the algorithms must be limited to using small n, which may have accuracy problems. The paper presents an alternative trinomial-tree GARCH option pricing algorithm. This algorithm provably does not have the short-maturity problem. Furthermore, the tree-size growth is guaranteed to be quadratic if n is less than a threshold easily determined by the model parameters. This level of efficiency makes the proposed algorithm practical. The surprising finding for the first time places a tree-based GARCH option pricing algorithm in the same complexity class as binomial trees under the Black–Scholes model. Extensive numerical evaluation is conducted to confirm the analytical results and the numerical accuracy of the proposed algorithm. Of independent interest is a simple and efficient technique to calculate the transition probabilities of a multinomial tree using generating functions.  相似文献   

4.
In this paper we consider the saddlepoint approximation for the valuation of a European-style call option in a Markovian, regime-switching, Black–Scholes–Merton economy, where the price process of an underlying risky asset is assumed to follow a Markov-modulated geometric Brownian motion. The standard option pricing procedure under this model becomes problematic as the occupation time of chains for a given state cannot be evaluated easily. In the case of two-state Markov chains, we present an explicit analytic formula of the cumulant generating function (CGF). When the process has more than two states, an approximate formula of the CGF is provided. We adopt a splitting method to reduce the complexity of computing the matrix exponential function. Then we use these CGFs to develop the use of the saddlepoint approximations. The numerical results show that the saddlepoint approximation is an efficient and reliable approach for option pricing under a multi-state regime-switching model.  相似文献   

5.
Based on the Black and Scholes (Black, F., and M. Scholes. (1973). The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637–659) and Merton (Merton, R. C. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal of Finance 29, 449–470) (BSM) contingent claims model, and KMV Corporation framework, we estimate the distance to default and the “risk neutral” default probabilities for a sample of 112 real estate companies over the period 1980 to 2001. Our empirical results classifies failed and non-failed companies into Type I error, cases that the BSM-type model fails to predict default when it did occur, and Type II error where BSM-type model predicts default when it did not occur. We find that none of the companies belong to the category of Type I error. Type II error is observed in 12 out of 112 companies. These results support the theoretical underpinnings of the BSM-type structural model in that the two driving forces of default are high leverage and high asset volatility.  相似文献   

6.
An important issue in derivative pricing that hasn't been explored much until very recently is the impact of short selling to the price of an option. This paper extends a recent publication in this area to the case in which a ban of short selling of the underlying alone is somewhat less ‘effective’ than the extreme case discussed by Guo and Zhu [Equal risk pricing under convex trading constraints. J. Econ. Dyn. Control, 2017, 76, 136–151]. The case presented here is closer to reality, in which the effect of a ban on the underlying of an option alone may quite often be ‘diluted’ due to market interactions of the underlying asset with other correlated assets. Under a new assumption that there exists at least a correlated asset in the market, which is allowed to be short sold and thus can be used by traders for hedging purposes even though short selling of the underlying itself is banned, a new closed-form equal-risk pricing formula for European options is successfully derived. The new formula contains two distinguishable advantages; (a) it does not induce any significantly extra burden in terms of numerically computing option values, compared with the effort involved in using the Black–Scholes formula, which is still popularly used in finance industry today; (b) it remains simple and elegant as only one additional parameter beyond the Black–Scholes formula is introduced, to reflect the dilution effect to the ban as a result of market interactions.  相似文献   

7.
This article presents a pure exchange economy that extends Rubinstein [Bell J. Econ. Manage. Sci., 1976, 7, 407–425] to show how the jump-diffusion option pricing model of Black and Scholes [J. Political Econ., 1973, 81, 637–654] and Merton [J. Financ. Econ., 1976, 4, 125–144] evolves in gamma jumping economies. From empirical analysis and theoretical study, both the aggregate consumption and the stock price are unknown in determining jumping times. By using the pricing kernel, we determine both the aggregate consumption jump time and the stock price jump time from the equilibrium interest rate and CCAPM (Consumption Capital Asset Pricing Model). Our general jump-diffusion option pricing model gives an explicit formula for how the jump process and the jump times alter the pricing. This innovation with predictable jump times enhances our analysis of the expected stock return in equilibrium and of hedging jump risks for jump-diffusion economies.  相似文献   

8.
The exploration of the mean-reversion of commodity prices is important for inventory management, inflation forecasting and contingent claim pricing. Bessembinder et al. [J. Finance, 1995, 50, 361–375] document the mean-reversion of commodity spot prices using futures term structure data; however, mean-reversion to a constant level is rejected in nearly all studies using historical spot price time series. This indicates that the spot prices revert to a stochastic long-run mean. Recognizing this, I propose a reduced-form model with the stochastic long-run mean as a separate factor. This model fits the futures dynamics better than do classical models such as the Gibson–Schwartz [J. Finance, 1990, 45, 959–976] model and the Casassus–Collin-Dufresne [J. Finance, 2005, 60, 2283–2331] model with a constant interest rate. An application for option pricing is also presented in this paper.  相似文献   

9.
Abstract

We consider the three-factor double mean reverting (DMR) option pricing model of Gatheral [Consistent Modelling of SPX and VIX Options, 2008], a model which can be successfully calibrated to both VIX options and SPX options simultaneously. One drawback of this model is that calibration may be slow because no closed form solution for European options exists. In this paper, we apply modified versions of the second-order Monte Carlo scheme of Ninomiya and Victoir [Appl. Math. Finance, 2008, 15, 107–121], and compare these to the Euler–Maruyama scheme with full truncation of Lord et al. [Quant. Finance, 2010, 10(2), 177–194], demonstrating on the one hand that fast calibration of the DMR model is practical, and on the other that suitably modified Ninomiya–Victoir schemes are applicable to the simulation of much more complicated time-homogeneous models than may have been thought previously.  相似文献   

10.
Cochrane and Sa'a-Requejo (2000, Journal of Political Economy) proposed the good-deal price bounds for the European call option on an event that is not a traded asset, but is correlated with a traded asset that can be used as an approximate hedge. One remarkable feature of their model is that the return on an event process explicitly appears in the option price bounds formula, which offered a contrast with the standard option pricing model. We show that the good-deal option price bounds on a non-traded event are obtained as a closed-form formula, when the return on an event is governed by a mean reverting process.  相似文献   

11.
Under the general affine jump-diffusion framework of Duffie et al. [Econometrica, 2000, 68, 1343–1376], this paper proposes an alternative pricing methodology for European-style forward start options that does not require any parallel optimization routine to ensure square integrability. Therefore, the proposed methodology is shown to possess a better accuracy–efficiency trade-off than the usual and more general approach initiated by Hong [Forward Smile and Derivative Pricing. Working paper, UBS, 2004] that is based on the knowledge of the forward characteristic function. Explicit pricing solutions are also offered under the nested jump-diffusion setting proposed by Bakshi et al. [J. Finance, 1997, 52, 2003–2049], which accommodates stochastic volatility and stochastic interest rates, and different integration schemes are numerically tested.  相似文献   

12.
Since the pioneering paper of Black and Scholes was published in 1973, enormous research effort has been spent on finding a multi-asset variant of their closed-form option pricing formula. In this paper, we generalize the Kirk [Managing Energy Price Risk, 1995] approximate formula for pricing a two-asset spread option to the case of a multi-asset basket-spread option. All the advantageous properties of being simple, accurate and efficient are preserved. As the final formula retains the same functional form as the Black–Scholes formula, all the basket-spread option Greeks are also derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark results obtained by numerical integration or Monte Carlo simulation with 10 million paths. An implicit correction method is further applied to reduce the pricing errors by factors of up to 100. The correction is governed by an unknown parameter, whose optimal value is found by solving a non-linear equation. Owing to its simplicity, the computing time for simultaneous pricing and hedging of basket-spread option with 10 underlying assets or less is kept below 1 ms. When compared against the existing approximation methods, the proposed basket-spread option formula coupled with the implicit correction turns out to be one of the most robust and accurate methods.  相似文献   

13.
This paper considers the problem of pricing American options when the dynamics of the underlying are driven by both stochastic volatility following a square-root process as used by Heston [Rev. Financial Stud., 1993, 6, 327–343], and by a Poisson jump process as introduced by Merton [J. Financial Econ., 1976, 3, 125–144]. Probability arguments are invoked to find a representation of the solution in terms of expectations over the joint distribution of the underlying process. A combination of Fourier transform in the log stock price and Laplace transform in the volatility is then applied to find the transition probability density function of the underlying process. It turns out that the price is given by an integral dependent upon the early exercise surface, for which a corresponding integral equation is obtained. The solution generalizes in an intuitive way the structure of the solution to the corresponding European option pricing problem obtained by Scott [Math. Finance, 1997, 7(4), 413–426], but here in the case of a call option and constant interest rates.  相似文献   

14.
We treat the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. We model the price process as a Geometric Brownian Motion with volatility evolving as a fractional Ornstein–Uhlenbeck process. We assume that the model has long-memory, thus the memory parameter H in the volatility is greater than 0.5. Although the price process evolves in continuous time, the reality is that observations can only be collected in discrete time. Using historical stock price information we adapt an interacting particle stochastic filtering algorithm to estimate the stochastic volatility empirical distribution. In order to deal with the pricing problem we construct a multinomial recombining tree using sampled values of the volatility from the stochastic volatility empirical measure. Moreover, we describe how to estimate the parameters of our model, including the long-memory parameter of the fractional Brownian motion that drives the volatility process using an implied method. Finally, we compute option prices on the S&P 500 index and we compare our estimated prices with the market option prices.  相似文献   

15.
Inspired by some works of Kirkby, J. L. [2015. Efficient option pricing by frame duality with the fast Fourier transform. SIAM Journal on Financial Mathematics 6(1), 713–747; 2016. An efficient transform method for Asian option pricing. SIAM Journal on Financial Mathematics 7(1), 845–892], we present a systematic study on effectively computing the Gerber–Shiu function in the Lévy risk model, where the frame duality projection is used for approximation. By introducing an auxiliary function, we provide a smooth extension of the Gerber–Shiu function, which has closed-form Fourier transform and is differentiable over the whole real line under some conditions. The objective function is approximated by its frame duality projection onto a Riesz basis, and the projection coefficients are readily computed by the fast Fourier transform algorithm. Error analysis is made and the effectiveness of our results will be further illustrated in the numerical experiments.  相似文献   

16.
Standard delta hedging fails to exactly replicate a European call option in the presence of transaction costs. We study a pricing and hedging model similar to the delta hedging strategy with an endogenous volatility parameter for the calculation of delta over time. The endogenous volatility depends on both the transaction costs and the option strike prices. The optimal hedging volatility is calculated using the criterion of minimizing the weighted upside and downside replication errors. The endogenous volatility model with equal weights on the up and down replication errors yields an option premium close to the Leland [J. Finance, 1985 Leland, HE. 1985. Option pricing and replication with transaction costs. J. Finance, 40: 12831301. [Crossref], [Web of Science ®] [Google Scholar], 40, 1283–1301] heuristic approach. The model with weights being the probabilities of the option's moneyness provides option prices closest to the actual prices. Option prices from the model are identical to the Black–Scholes option prices when transaction costs are zero. Data on S&P 500 index cash options from January to June 2008 illustrate the model.  相似文献   

17.
This article derives a closed-form pricing formula for European exchange options under a non-Gaussian framework for the underlying assets, intending to resolve mispricing associated with a geometric Brownian motion. The dynamics of each of the two correlated underlying assets are assumed to be governed by the exponential of a skew-Brownian motion, which is specified as a sum of a standard Brownian motion and an independent reflected Brownian motion. The proposed pricing formula does not incur additional computational costs than the standard Black–Scholes framework, which one can quickly recover as a particular case of the proposed framework. Finally, we present some numerical experiments followed by a valuable discussion on the results.  相似文献   

18.
    
An important determinant of option prices is the elasticity of the pricing kernel used to price all claims in the economy. In this paper, we first show that for a given forward price of the underlying asset, option prices are higher when the elasticity of the pricing kernel is declining than when it is constant. We then investigate the implications of the elasticity of the pricing kernel for the stochastic process followed by the underlying asset. Given that the underlying information process follows a geometric Brownian motion, we demonstrate that constant elasticity of the pricing kernel is equivalent to a Brownian motion for the forward price of the underlying asset, so that the Black–Scholes formula correctly prices options on the asset. In contrast, declining elasticity implies that the forward price process is no longer a Brownian motion: it has higher volatility and exhibits autocorrelation. In this case, the Black–Scholes formula underprices all options.  相似文献   

19.
Abstract

The volatility smile and systematic mispricing of the Black–Scholes option pricing model are the typical motivation for examining stochastic processes other than geometric Brownian motion to describe the underlying stock price. In this paper a new stochastic process is presented, which is a special case of the skew-Brownian motion of Itô and McKean. The process in question is the sum of a standard Brownian motion and an independent reflecting Brownian motion that is similar in construction to the stochastic representation of a skew-normal random variable. This stochastic process is taken in its exponential form to price European options. The derived option price nests the Black–Scholes equation as a special case and is flexible enough to accommodate stochastic volatility as well as stochastic skewness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号