首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this paper, we study perpetual American call and put options in an exponential Lévy model. We consider a negative effective discount rate that arises in a number of financial applications including stock loans and real options, where the strike price can potentially grow at a higher rate than the original discount factor. We show that in this case a double continuation region arises and we identify the two critical prices. We also generalize this result to multiple stopping problems of Swing type, that is, when successive exercise opportunities are separated by i.i.d. random refraction times. We conduct an extensive numerical analysis for the Black–Scholes model and the jump‐diffusion model with exponentially distributed jumps.  相似文献   

2.
  总被引:6,自引:0,他引:6  
We show that the problem of pricing the American put is equivalent to solving an optimal stopping problem. the optimal stopping problem gives rise to a parabolic free-boundary problem. We show there is a unique solution to this problem which has a lower boundary. We identify an integral equation solved by the boundary and show that it is the unique solution to this equation satisfying certain natural additional conditions. the proofs also give a natural decomposition of the price of the American option as the sum of the price of the European option and an \"American premium.\"  相似文献   

3.
Exercise Regions And Efficient Valuation Of American Lookback Options   总被引:1,自引:0,他引:1  
This paper presents an efficient method to compute the values and early exercise boundaries of American fixed strike lookback options. The method reduces option valuation to a single optimal stopping problem for standard Brownian motion and an associated path-dependent functional, indexed by one parameter in the absence of dividends and by two parameters in the presence of a dividend rate. Numerical results obtained by this method show that, after a space-time transformation, the stopping boundaries are well approximated by certain piecewise linear functions with a few pieces, leading to fast and accurate approximations for American lookback option values. An explicit decomposition formula for American lookback options is derived and applied not only to the development of these approximations but also to the asymptotic analysis of the early exercise boundary near the expiration date.  相似文献   

4.
    
We consider risk‐averse investors with different levels of anxiety about asset price drawdowns. The latter is defined as the distance of the current price away from its best performance since inception. These drawdowns can increase either continuously or by jumps, and will contribute toward the investor's overall impatience when breaching the investor's private tolerance level. We investigate the unusual reactions of investors when aiming to sell an asset under such adverse market conditions. Mathematically, we study the optimal stopping of the utility of an asset sale with a random discounting that captures the investor's overall impatience. The random discounting is given by the cumulative amount of time spent by the drawdowns in an undesirable high region, fine‐tuned by the investor's personal tolerance and anxiety about drawdowns. We prove that in addition to the traditional take‐profit sales, the real‐life employed stop‐loss orders and trailing stops may become part of the optimal selling strategy, depending on different personal characteristics. This paper thus provides insights on the effect of anxiety and its distinction with traditional risk aversion on decision making.  相似文献   

5.
    
We develop a general framework for statically hedging and pricing European‐style options with nonstandard terminal payoffs, which can be applied to mixed static–dynamic and semistatic hedges for many path‐dependent exotic options including variance swaps and barrier options. The goal is achieved by separating the hedging and pricing problems to obtain replicating strategies. Once prices have been obtained for a set of basis payoffs, the pricing and hedging of financial securities with arbitrary payoff functions is accomplished by computing a set of “hedge coefficients” for that security. This method is particularly well suited for pricing baskets of options simultaneously, and is robust to discontinuities of payoffs. In addition, the method enables a systematic comparison of the value of a payoff (or portfolio) across a set of competing model specifications with implications for security design.  相似文献   

6.
We present here the quantization method which is well-adapted for the pricing and hedging of American options on a basket of assets. Its purpose is to compute a large number of conditional expectations by projection of the diffusion on optimal grids designed to minimize the (square mean) projection error ( Graf and Luschgy 2000 ). An algorithm to compute such grids is described. We provide results concerning the orders of the approximation with respect to the regularity of the payoff function and the global size of the grids. Numerical tests are performed in dimensions 2, 4, 5, 6, 10 with American style exchange options. They show that theoretical orders are probably pessimistic.  相似文献   

7.
    
We study a robust portfolio optimization problem under model uncertainty for an investor with logarithmic or power utility. The uncertainty is specified by a set of possible Lévy triplets, that is, possible instantaneous drift, volatility, and jump characteristics of the price process. We show that an optimal investment strategy exists and compute it in semi‐closed form. Moreover, we provide a saddle point analysis describing a worst‐case model.  相似文献   

8.
    
The short‐time asymptotic behavior of option prices for a variety of models with jumps has received much attention in recent years. In this work, a novel second‐order approximation for at‐the‐money (ATM) option prices is derived for a large class of exponential Lévy models with or without Brownian component. The results hereafter shed new light on the connection between both the volatility of the continuous component and the jump parameters and the behavior of ATM option prices near expiration. In the presence of a Brownian component, the second‐order term, in time‐t, is of the form , with d2 only depending on Y, the degree of jump activity, on σ, the volatility of the continuous component, and on an additional parameter controlling the intensity of the “small” jumps (regardless of their signs). This extends the well‐known result that the leading first‐order term is . In contrast, under a pure‐jump model, the dependence on Y and on the separate intensities of negative and positive small jumps are already reflected in the leading term, which is of the form . The second‐order term is shown to be of the form and, therefore, its order of decay turns out to be independent of Y. The asymptotic behavior of the corresponding Black–Scholes implied volatilities is also addressed. Our method of proof is based on an integral representation of the option price involving the tail probability of the log‐return process under the share measure and a suitable change of probability measure under which the pure‐jump component of the log‐return process becomes a Y‐stable process. Our approach is sufficiently general to cover a wide class of Lévy processes, which satisfy the latter property and whose Lévy density can be closely approximated by a stable density near the origin. Our numerical results show that the first‐order term typically exhibits rather poor performance and that the second‐order term can significantly improve the approximation's accuracy, particularly in the absence of a Brownian component.  相似文献   

9.
The note deals with the pricing of American options related to foreign market equities. the form of the early exercise premium representation of the American option's price in a stochastic interest rate economy is established. Subsequently, the American fixed exchange rate foreign equity option and the American equity-linked foreign exchange option are studied in detail.  相似文献   

10.
We study power utility maximization for exponential Lévy models with portfolio constraints, where utility is obtained from consumption and/or terminal wealth. For convex constraints, an explicit solution in terms of the Lévy triplet is constructed under minimal assumptions by solving the Bellman equation. We use a novel transformation of the model to avoid technical conditions. The consequences for q‐optimal martingale measures are discussed as well as extensions to nonconvex constraints.  相似文献   

11.
    
We analyze the behavior of the implied volatility smile for options close to expiry in the exponential Lévy class of asset price models with jumps. We introduce a new renormalization of the strike variable with the property that the implied volatility converges to a nonconstant limiting shape, which is a function of both the diffusion component of the process and the jump activity (Blumenthal–Getoor) index of the jump component. Our limiting implied volatility formula relates the jump activity of the underlying asset price process to the short‐end of the implied volatility surface and sheds new light on the difference between finite and infinite variation jumps from the viewpoint of option prices: in the latter, the wings of the limiting smile are determined by the jump activity indices of the positive and negative jumps, whereas in the former, the wings have a constant model‐independent slope. This result gives a theoretical justification for the preference of the infinite variation Lévy models over the finite variation ones in the calibration based on short‐maturity option prices.  相似文献   

12.
    
This paper introduces a dual problem to study a continuous‐time consumption and investment problem with incomplete markets and Epstein–Zin stochastic differential utilities. Duality between the primal and dual problems is established. Consequently, the optimal strategy of this consumption and investment problem is identified without assuming several technical conditions on market models, utility specifications, and agent's admissible strategies. Meanwhile, the minimizer of the dual problem is identified as the utility gradient of the primal value and is economically interpreted as the “least favorable” completion of the market.  相似文献   

13.
This paper presents hedging strategies for European and exotic options in a Lévy market. By applying Taylor’s theorem, dynamic hedging portfolios are constructed under different market assumptions, such as the existence of power jump assets or moment swaps. In the case of European options or baskets of European options, static hedging is implemented. It is shown that perfect hedging can be achieved. Delta and gamma hedging strategies are extended to higher moment hedging by investing in other traded derivatives depending on the same underlying asset. This development is of practical importance as such other derivatives might be readily available. Moment swaps or power jump assets are not typically liquidly traded. It is shown how minimal variance portfolios can be used to hedge the higher order terms in a Taylor expansion of the pricing function, investing only in a risk‐free bank account, the underlying asset, and potentially variance swaps. The numerical algorithms and performance of the hedging strategies are presented, showing the practical utility of the derived results.  相似文献   

14.
    
We consider the problem of finding optimal exercise policies for American options, both under constant and stochastic volatility settings. Rather than work with the usual equations that characterize the price exclusively, we derive and use boundary evolution equations that characterize the evolution of the optimal exercise boundary. Using these boundary evolution equations we show how one can construct very efficient computational methods for pricing American options that avoid common sources of error. First, we detail a methodology for standard static grids and then describe an improvement that defines a grid that evolves dynamically while solving the problem. When integral representations are available, as in the Black–Scholes setting, we also describe a modified integral method that leverages on the representation to solve the boundary evolution equations. Finally we compare runtime and accuracy to other popular numerical methods. The ideas and methodology presented herein can easily be extended to other optimal stopping problems.  相似文献   

15.
In this paper, we present an algorithm for pricing barrier options in one‐dimensional Markov models. The approach rests on the construction of an approximating continuous‐time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing it for a range of models, including a local Lévy process and a local volatility jump‐diffusion. We also provide a convergence proof and error estimates for this algorithm.  相似文献   

16.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives.  相似文献   

17.
ON THE AMERICAN OPTION PROBLEM   总被引:1,自引:0,他引:1  
Goran  Peskir 《Mathematical Finance》2005,15(1):169-181
We show how the change-of-variable formula with local time on curves derived recently in Peskir (2002) can be used to prove that the optimal stopping boundary for the American put option can be characterized as the unique solution of a nonlinear integral equation arising from the early exercise premium representation. This settles the question raised in Myneni (1992) and dating back to McKean (1965) .  相似文献   

18.
    
This paper solves the consumption-investment problem under Epstein-Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed-horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.  相似文献   

19.
    
Considering a positive portfolio diffusion X with negative drift, we investigate optimal stopping problems of the form where f is a nonincreasing function, τ is the next random time where the portfolio X crosses zero and θ is any stopping time smaller than τ. Hereby, our motivation is the obtention of an optimal selling strategy minimizing the relative distance between the liquidation value of the portfolio and its highest possible value before it reaches zero. This paper unifies optimal selling rules observed for the quadratic absolute distance criteria in this stationary framework with bang–bang type ones observed for monetary invariant criteria but in finite horizon. More precisely, we provide a verification result for the general stopping problem of interest and derive the exact solution for two classical criteria f of the literature. For the power utility criterion with , instantaneous selling is always optimal, which is consistent with previous observations for the Black‐Scholes model in finite observation. On the contrary, for a relative quadratic error criterion, , selling is optimal as soon as the process X crosses a specified function φ of its running maximum . These results reinforce the idea that optimal stopping problems of similar type lead easily to selling rules of very different nature. Nevertheless, our numerical experiments suggest that the practical optimal selling rule for the relative quadratic error criterion is in fact very close to immediate selling.  相似文献   

20.
In this paper, we consider modeling of credit risk within the Libor market models. We extend the classical definition of the default‐free forward Libor rate and develop the rating based Libor market model to cover defaultable bonds with credit ratings. As driving processes for the dynamics of the default‐free and the predefault term structure of Libor rates, time‐inhomogeneous Lévy processes are used. Credit migration is modeled by a conditional Markov chain, whose properties are preserved under different forward Libor measures. Conditions for absence of arbitrage in the model are derived and valuation formulae for some common credit derivatives in this setup are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号