共查询到20条相似文献,搜索用时 0 毫秒
1.
In the style of Rogers (2001) , we give a unified method for finding the dual problem in a given model by stating the problem as an unconstrained Lagrangian problem. In a theoretical part we prove our main theorem, Theorem 3.1, which shows that under a number of conditions the value of the dual and primal problems is equal. The theoretical setting is sufficiently general to be applied to a large number of examples including models with transaction costs, such as Cvitanic and Karatzas (1996) (which could not be covered by the setting in Rogers [2001] ). To apply the general result one has to verify the assumptions of Theorem 3.1 for each concrete example. We show how the method applies for two examples, first Cuoco and Liu (1992) and second Cvitanic and Karatzas (1996) . 相似文献
2.
Oleksii Mostovyi 《Mathematical Finance》2018,28(1):106-118
We study the problem of expected utility maximization in a large market, i.e., a market with countably many traded assets. Assuming that agents have von Neumann–Morgenstern preferences with stochastic utility function and that consumption occurs according to a stochastic clock, we obtain the “usual” conclusions of the utility maximization theory. We also give a characterization of the value function in a large market in terms of a sequence of value functions in finite‐dimensional models. 相似文献
3.
Oleksii Mostovyi 《Mathematical Finance》2017,27(1):96-114
We consider an optimal investment problem with intermediate consumption and random endowment, in an incomplete semimartingale model of the financial market. We establish the key assertions of the utility maximization theory, assuming that both primal and dual value functions are finite in the interiors of their domains and that the random endowment at maturity can be dominated by the terminal value of a self‐financing wealth process. In order to facilitate the verification of these conditions, we present alternative, but equivalent conditions, under which the conclusions of the theory hold. 相似文献
4.
The problem of robust utility maximization in an incomplete market with volatility uncertainty is considered, in the sense that the volatility of the market is only assumed to lie between two given bounds. The set of all possible models (probability measures) considered here is nondominated. We propose studying this problem in the framework of second‐order backward stochastic differential equations (2BSDEs for short) with quadratic growth generators. We show for exponential, power, and logarithmic utilities that the value function of the problem can be written as the initial value of a particular 2BSDE and prove existence of an optimal strategy. Finally, several examples which shed more light on the problem and its links with the classical utility maximization one are provided. In particular, we show that in some cases, the upper bound of the volatility interval plays a central role, exactly as in the option pricing problem with uncertain volatility models. 相似文献
5.
This note contains ramifications of results of Delbaen et al. (2002). Assuming that the price process is locally bounded and admits an equivalent local martingale measure with finite entropy, we show, without further assumption, that in the case of exponential utility the optimal portfolio process is a martingale with respect to each local martingale measure with finite entropy. Moreover, the optimal value always can be attained on a sequence of uniformly bounded portfolios. 相似文献
6.
The left tail of the implied volatility skew, coming from quotes on out‐of‐the‐money put options, can be thought to reflect the market's assessment of the risk of a huge drop in stock prices. We analyze how this market information can be integrated into the theoretical framework of convex monetary measures of risk. In particular, we make use of indifference pricing by dynamic convex risk measures, which are given as solutions of backward stochastic differential equations, to establish a link between these two approaches to risk measurement. We derive a characterization of the implied volatility in terms of the solution of a nonlinear partial differential equation and provide a small time‐to‐maturity expansion and numerical solutions. This procedure allows to choose convex risk measures in a conveniently parameterized class, distorted entropic dynamic risk measures, which we introduce here, such that the asymptotic volatility skew under indifference pricing can be matched with the market skew. We demonstrate this in a calibration exercise to market implied volatility data. 相似文献
7.
Yuhong Xu 《Mathematical Finance》2016,26(3):638-673
This paper deals with multidimensional dynamic risk measures induced by conditional g‐expectations. A notion of multidimensional g‐expectation is proposed to provide a multidimensional version of nonlinear expectations. By a technical result on explicit expressions for the comparison theorem, uniqueness theorem, and viability on a rectangle of solutions to multidimensional backward stochastic differential equations, some necessary and sufficient conditions are given for the constancy, monotonicity, positivity, and translatability properties of multidimensional conditional g‐expectations and multidimensional dynamic risk measures; we prove that a multidimensional dynamic g‐risk measure is nonincreasingly convex if and only if the generator g satisfies a quasi‐monotone increasingly convex condition. A general dual representation is given for the multidimensional dynamic convex g‐risk measure in which the penalty term is expressed more precisely. It is shown that model uncertainty leads to the convexity of risk measures. As to applications, we show how this multidimensional approach can be applied to measure the insolvency risk of a firm with interacting subsidiaries; optimal risk sharing for ‐tolerant g‐risk measures, and risk contribution for coherent g‐risk measures are investigated. Insurance g‐risk measure and other ways to induce g‐risk measures are also studied at the end of the paper. 相似文献
8.
We consider the problem of optimal investment when agents take into account their relative performance by comparison to their peers. Given N interacting agents, we consider the following optimization problem for agent i, : where is the utility function of agent i, his portfolio, his wealth, the average wealth of his peers, and is the parameter of relative interest for agent i. Together with some mild technical conditions, we assume that the portfolio of each agent i is restricted in some subset . We show existence and uniqueness of a Nash equilibrium in the following situations:
- ‐ unconstrained agents,
- ‐ constrained agents with exponential utilities and Black–Scholes financial market.
9.
Stéphane Crépey 《Mathematical Finance》2015,25(1):23-50
The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so‐called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced‐form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations. 相似文献
10.
Pietro Siorpaes 《Mathematical Finance》2016,26(3):602-616
In this paper we ask whether, given a stock market and an illiquid derivative, there exists arbitrage‐free prices at which a utility‐maximizing agent would always want to buy the derivative, irrespectively of his own initial endowment of derivatives and cash. We prove that this is false for any given investor if one considers all initial endowments with finite utility, and that it can instead be true if one restricts to the endowments in the interior. We show, however, how the endowments on the boundary can give rise to very odd phenomena; for example, an investor with such an endowment would choose not to trade in the derivative even at prices arbitrarily close to some arbitrage price. 相似文献
11.
Andrew Papanicolaou 《Mathematical Finance》2019,29(1):208-248
This paper considers a non‐Markov control problem arising in a financial market where asset returns depend on hidden factors. The problem is non‐Markov because nonlinear filtering is required to make inference on these factors, and hence the associated dynamic program effectively takes the filtering distribution as one of its state variables. This is of significant difficulty because the filtering distribution is a stochastic probability measure of infinite dimension, and therefore the dynamic program has a state that cannot be differentiated in the traditional sense. This lack of differentiability means that the problem cannot be solved using a Hamilton–Jacobi–Bellman equation. This paper will show how the problem can be analyzed and solved using backward stochastic differential equations, with a key tool being the problem's dual formulation. 相似文献
12.
This paper is concerned with the study of insurance related derivatives on financial markets that are based on nontradable underlyings, but are correlated with tradable assets. We calculate exponential utility‐based indifference prices, and corresponding derivative hedges. We use the fact that they can be represented in terms of solutions of forward‐backward stochastic differential equations (FBSDE) with quadratic growth generators. We derive the Markov property of such FBSDE and generalize results on the differentiability relative to the initial value of their forward components. In this case the optimal hedge can be represented by the price gradient multiplied with the correlation coefficient. This way we obtain a generalization of the classical “delta hedge” in complete markets. 相似文献
13.
We introduce an arbitrage‐free framework for robust valuation adjustments. An investor trades a credit default swap portfolio with a risky counterparty, and hedges credit risk by taking a position in defaultable bonds. The investor does not know the exact return rate of her counterparty's bond, but she knows it lies within an uncertainty interval. We derive both upper and lower bounds for the XVA process of the portfolio, and show that these bounds may be recovered as solutions of nonlinear ordinary differential equations. The presence of collateralization and closeout payoffs leads to important differences with respect to classical credit risk valuation. The value of the super‐replicating portfolio cannot be directly obtained by plugging one of the extremes of the uncertainty interval in the valuation equation, but rather depends on the relation between the XVA replicating portfolio and the closeout value throughout the life of the transaction. Our comparative statics analysis indicates that credit contagion has a nonlinear effect on the replication strategies and on the XVA. 相似文献
14.
In this paper, we study the risk-aversion behavior of an agent in the dynamic framework of consumption/investment decision making that allows the possibility of bankruptcy. Agent's consumption utility is assumed to be represented by a strictly increasing, strictly concave, continuously differentiable function in the general case and by a HARA-type function in the special case treated in the paper. Coefficients of absolute and relative risk aversion are defined to be the well-known curvature measures associated with the derived utility of wealth obtained as the value function of the agent's optimization problem. Through an analysis of these coefficients, we show how the change in agent's risk aversion as his wealth changes depends on his consumption utility and the other problem parameters, including the payment at bankruptcy. Moreover, in the HARA case, we can conclude that the agent's relative risk aversion is nondecreasing with wealth, while his absolute risk aversion is decreasing with wealth only if he is sufficiently wealthy. At lower wealth levels, however, the agent's absolute risk aversion may increase with wealth in some cases. 相似文献
15.
Tomasz R. Bielecki Hanqing Jin Stanley R. Pliska Xun Yu Zhou 《Mathematical Finance》2005,15(2):213-244
A continuous-time mean-variance portfolio selection problem is studied where all the market coefficients are random and the wealth process under any admissible trading strategy is not allowed to be below zero at any time. The trading strategy under consideration is defined in terms of the dollar amounts, rather than the proportions of wealth, allocated in individual stocks. The problem is completely solved using a decomposition approach. Specifically, a (constrained) variance minimizing problem is formulated and its feasibility is characterized. Then, after a system of equations for two Lagrange multipliers is solved, variance minimizing portfolios are derived as the replicating portfolios of some contingent claims, and the variance minimizing frontier is obtained. Finally, the efficient frontier is identified as an appropriate portion of the variance minimizing frontier after the monotonicity of the minimum variance on the expected terminal wealth over this portion is proved and all the efficient portfolios are found. In the special case where the market coefficients are deterministic, efficient portfolios are explicitly expressed as feedback of the current wealth, and the efficient frontier is represented by parameterized equations. Our results indicate that the efficient policy for a mean-variance investor is simply to purchase a European put option that is chosen, according to his or her risk preferences, from a particular class of options. 相似文献
16.
Stéphane Crépey 《Mathematical Finance》2015,25(1):1-22
This and the follow‐up paper deal with the valuation and hedging of bilateral counterparty risk on over‐the‐counter derivatives. Our study is done in a multiple‐curve setup reflecting the various funding constraints (or costs) involved, allowing one to investigate the question of interaction between bilateral counterparty risk and funding. The first task is to define a suitable notion of no arbitrage price in the presence of various funding costs. This is the object of this paper, where we develop an “additive, multiple curve” extension of the classical “multiplicative (discounted), one curve” risk‐neutral pricing approach. We derive the dynamic hedging interpretation of such an “additive risk‐neutral” price, starting by consistency with pricing by replication in the case of a complete market. This is illustrated by a completely solved example building over previous work by Burgard and Kjaer. 相似文献
17.
This paper examines optimal consumption and investment choices and the cost of hedging contingent claims in the presence of margin requirements or, more generally, of nonlinear wealth dynamics and constraints on the portfolio policies. Existence of optimal policies is established using martingale and duality techniques under general assumptions on the securities' price process and the investor's preferences. As an illustration, explicit solutions are provided for an agent with ‘logarithmic’ utility. A PDE characterization of the cost of hedging a nonnegative path‐independent European contingent claim is also provided. 相似文献
18.
The problem of portfolio allocation in the context of stocks evolving in random environments, that is with volatility and returns depending on random factors, has attracted a lot of attention. The problem of maximizing a power utility at a terminal time with only one random factor can be linearized thanks to a classical distortion transformation. In the present paper, we address the situation with several factors using a perturbation technique around the case where these factors are perfectly correlated reducing the problem to the case with a single factor. Our proposed approximation requires to solve numerically two linear equations in lower dimension instead of a fully nonlinear HJB equation. A rigorous accuracy result is derived by constructing sub- and super-solutions so that their difference is at the desired order of accuracy. We illustrate our result with a particular model for which we have explicit formulas for the approximation. In order to keep the notations as explicit as possible, we treat the case with one stock and two factors and we describe an extension to the case with two stocks and two factors. 相似文献
19.
In a financial market with a continuous price process and proportional transaction costs, we investigate the problem of utility maximization of terminal wealth. We give sufficient conditions for the existence of a shadow price process, i.e., a least favorable frictionless market leading to the same optimal strategy and utility as in the original market under transaction costs. The crucial ingredients are the continuity of the price process and the hypothesis of “no unbounded profit with bounded risk.” A counterexample reveals that these hypotheses cannot be relaxed. 相似文献
20.
We derive a formula for the minimal initial wealth needed to hedge an arbitrary contingent claim in a continuous-time model with proportional transaction costs; the expression obtained can be interpreted as the supremum of expected discounted values of the claim, over all (pairs of) probability measures under which the “wealth process” is a supermartingale. Next, we prove the existence of an optimal solution to the portfolio optimization problem of maximizing utility from terminal wealth in the same model, we also characterize this solution via a transformation to a hedging problem: the optimal portfolio is the one that hedges the inverse of marginal utility evaluated at the shadow state-price density solving the corresponding dual problem, if such exists. We can then use the optimal shadow state-price density for pricing contingent claims in this market. the mathematical tools are those of continuous-time martingales, convex analysis, functional analysis, and duality theory. 相似文献