首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper introduces and studies the econometric properties of a general new class of models, which I refer to as jump-driven stochastic volatility models, in which the volatility is a moving average of past jumps. I focus attention on two particular semiparametric classes of jump-driven stochastic volatility models. In the first, the price has a continuous component with time-varying volatility and time-homogeneous jumps. The second jump-driven stochastic volatility model analyzed here has only jumps in the price, which have time-varying size. In the empirical application I model the memory of the stochastic variance with a CARMA(2,1) kernel and set the jumps in the variance to be proportional to the squared price jumps. The estimation, which is based on matching moments of certain realized power variation statistics calculated from high-frequency foreign exchange data, shows that the jump-driven stochastic volatility model containing continuous component in the price performs best. It outperforms a standard two-factor affine jump–diffusion model, but also the pure-jump jump-driven stochastic volatility model for the particular jump specification.  相似文献   

2.
3.
We consider European options on a price process that follows the log-linear stochastic volatility model. Two stochastic integrals in the option pricing formula are costly to compute. We derive a central limit theorem to approximate them. At parameter settings appropriate to foreign exchange data our formulas improve computation speed by a factor of 1000 over brute force Monte Carlo making MCMC statistical methods practicable. We provide estimates of model parameters from daily data on the Swiss Franc to Euro and Japanese Yen to Euro over the period 1999–2002.  相似文献   

4.
Bayesian hypothesis testing in latent variable models   总被引:1,自引:0,他引:1  
Hypothesis testing using Bayes factors (BFs) is known not to be well defined under the improper prior. In the context of latent variable models, an additional problem with BFs is that they are difficult to compute. In this paper, a new Bayesian method, based on the decision theory and the EM algorithm, is introduced to test a point hypothesis in latent variable models. The new statistic is a by-product of the Bayesian MCMC output and, hence, easy to compute. It is shown that the new statistic is appropriately defined under improper priors because the method employs a continuous loss function. In addition, it is easy to interpret. The method is illustrated using a one-factor asset pricing model and a stochastic volatility model with jumps.  相似文献   

5.
We consider pseudo-panel data models constructed from repeated cross sections in which the number of individuals per group is large relative to the number of groups and time periods. First, we show that, when time-invariant group fixed effects are neglected, the OLS estimator does not converge in probability to a constant but rather to a random variable. Second, we show that, while the fixed-effects (FE) estimator is consistent, the usual t statistic is not asymptotically normally distributed, and we propose a new robust t statistic whose asymptotic distribution is standard normal. Third, we propose efficient GMM estimators using the orthogonality conditions implied by grouping and we provide t tests that are valid even in the presence of time-invariant group effects. Our Monte Carlo results show that the proposed GMM estimator is more precise than the FE estimator and that our new t test has good size and is powerful.  相似文献   

6.
In this paper the correlation structure in the classical leverage stochastic volatility (SV) model is generalized based on a linear spline. In the new model the correlation between the return and volatility innovations is time varying and depends nonparametrically on the type of news arrived to the market. Theoretical properties of the proposed model are examined. The model estimation and comparison are conducted by Bayesian methods. The performance of the estimates are examined in simulations. The new model is fitted to daily and weekly US data and compared with the classical SV and GARCH models in terms of their in-sample and out-of-sample performances. Empirical results suggest evidence in favor of the proposed model. In particular, the new model finds strong evidence of time varying leverage effect in individual stocks when the classical model fails to identify the leverage effect.  相似文献   

7.
This paper modeled the effects of firms’ fundamentals such as total assets and long-term debt and of macroeconomic variables such as unemployment and interest rates on quarterly stock prices of over 3000 US firms in the period 2000–07. The merged CRSP/Compustat database was augmented by macroeconomic variables and comprehensive dynamic models were estimated by maximum likelihood taking into account heterogeneity across firms. Likelihood ratio statistics were developed for sequentially testing hypotheses regarding the adequacy of macroeconomic variables in the models. The main findings were that the estimated coefficients of lagged stock prices in simple dynamic random effects models were in the interval 0.90–0.95. Second, comprehensive dynamic models for stock prices showed that the firms’ earnings per share, total assets, long-term debt, dividends per share, and unemployment and interest rates were significant predictors; there were significant interactions between firms’ long-term debt and interest rates. Finally, implications of the results for corporate policies are discussed.  相似文献   

8.
This paper introduces the Dynamic Additive Quantile (DAQ) model that ensures the monotonicity of conditional quantile estimates. The DAQ model is easily estimable and can be used for computation and updating of the Value-at-Risk. An asymptotically efficient estimator of the DAQ is obtained by maximizing an objective function based on the inverse KLIC measure. An alternative estimator proposed in the paper is the Method of L-Moments estimator (MLM). The MLM estimator is consistent, but generally not fully efficient. Goodness-of-fit tests and diagnostic tools for the assessment of the model are also provided. For illustration, the DAQ model is estimated from a series of returns on the Toronto Stock Exchange (TSX) market index.  相似文献   

9.
This paper develops a dynamic approximate factor model in which returns are time-series heteroskedastic. The heteroskedasticity has three components: a factor-related component, a common asset-specific component, and a purely asset-specific component. We develop a new multivariate GARCH model for the factor-related component. We develop a univariate stochastic volatility model linked to a cross-sectional series of individual GARCH models for the common asset-specific component and the purely asset-specific component. We apply the analysis to monthly US equity returns for the period January 1926 to December 2000. We find that all three components contribute to the heteroskedasticity of individual equity returns. Factor volatility and the common component in asset-specific volatility have long-term secular trends as well as short-term autocorrelation. Factor volatility has correlation with interest rates and the business cycle.  相似文献   

10.
This paper presents a general statistical framework for estimation, testing and comparison of asset pricing models using the unconstrained distance measure of Hansen and Jagannathan (1997). The limiting results cover both linear and nonlinear models that could be correctly specified or misspecified. We propose modified versions of the existing model selection tests and new pivotal specification and model comparison tests with improved finite-sample properties. In addition, we provide formal tests of multiple model comparison. The excellent size and power properties of the proposed tests are demonstrated using simulated data from linear and nonlinear asset pricing models.  相似文献   

11.
Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein–Uhlenbeck (OU) process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or jumps, into the volatility process. They also consider superpositions of such processes and we extend that to the inclusion of a jump component in the returns. In addition, we allow for leverage effects and we introduce separate risk pricing for the volatility components. We design and implement practically relevant inference methods for such models, within the Bayesian paradigm. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and we use a series representation of Lévy processes. MCMC methods for such models are complicated by the fact that parameter changes will often induce a change in the distribution of the representation of the process and the associated problem of overconditioning. We avoid this problem by dependent thinning methods. An application to stock price data shows the models perform very well, even in the face of data with rapid changes, especially if a superposition of processes with different risk premiums and a leverage effect is used.  相似文献   

12.
We provide a new theoretical framework for disentangling and estimating the sensitivity towards systematic diffusive and jump risks in the context of factor models. Our estimates of the sensitivities towards systematic risks, or betas, are based on the notion of increasingly finer sampled returns over fixed time intervals. We show consistency and derive the asymptotic distributions of our estimators. In an empirical application of the new procedures involving high-frequency data for forty individual stocks, we find that the estimated monthly diffusive and jump betas with respect to an aggregate market portfolio differ substantially for some of the stocks in the sample.  相似文献   

13.
We examine the asymptotic properties of the coefficient of determination, R2R2, in models with α-stableα-stable   random variables. If the regressor and error term share the same index of stability α<2α<2, we show that the R2R2  statistic does not converge to a constant but has a nondegenerate distribution on the entire [0,1][0,1] interval. We provide closed-form expressions for the cumulative distribution function and probability density function of this limit random variable, and we show that the density function is unbounded at 0 and 1. If the indices of stability of the regressor and error term are unequal, we show that the coefficient of determination converges in probability to either 0 or 1, depending on which variable has the smaller index of stability, irrespective of the value of the slope coefficient. In an empirical application, we revisit the Fama and MacBeth (1973) two-stage regression and demonstrate that in the infinite-variance case the R2R2  statistic of the second-stage regression converges to 0 in probability even if the slope coefficient is nonzero. We deduce that a small value of the R2R2  statistic should not, in itself, be used to reject the usefulness of a regression model.  相似文献   

14.
This paper develops a maximum likelihood (ML) method to estimate partially observed diffusion models based on data sampled at discrete times. The method combines two techniques recently proposed in the literature in two separate steps. In the first step, the closed form approach of Aït-Sahalia (2008) is used to obtain a highly accurate approximation to the joint transition probability density of the latent and the observed states. In the second step, the efficient importance sampling technique of Richard and Zhang (2007) is used to integrate out the latent states, thereby yielding the likelihood function. Using both simulated and real data, we show that the proposed ML method works better than alternative methods. The new method does not require the underlying diffusion to have an affine structure and does not involve infill simulations. Therefore, the method has a wide range of applicability and its computational cost is moderate.  相似文献   

15.
Following Hamilton [1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357–384], estimation of Markov regime-switching regressions typically relies on the assumption that the latent state variable controlling regime change is exogenous. We relax this assumption and develop a parsimonious model of endogenous Markov regime-switching. Inference via maximum likelihood estimation is possible with relatively minor modifications to existing recursive filters. The model nests the exogenous switching model, yielding straightforward tests for endogeneity. In Monte Carlo experiments, maximum likelihood estimates of the endogenous switching model parameters were quite accurate, even in the presence of certain model misspecifications. As an application, we extend the volatility feedback model of equity returns given in Turner et al. [1989. A Markov model of heteroskedasticity, risk, and learning in the stock market. Journal of Financial Economics 25, 3–22] to allow for endogenous switching.  相似文献   

16.
We develop an efficient and analytically tractable method for estimation of parametric volatility models that is robust to price-level jumps. The method entails first integrating intra-day data into the Realized Laplace Transform of volatility, which is a model-free estimate of the daily integrated empirical Laplace transform of the unobservable volatility. The estimation is then done by matching moments of the integrated joint Laplace transform with those implied by the parametric volatility model. In the empirical application, the best fitting volatility model is a non-diffusive two-factor model where low activity jumps drive its persistent component and more active jumps drive the transient one.  相似文献   

17.
18.
We develop new methods for representing the asset-pricing implications of stochastic general equilibrium models. We provide asset-pricing counterparts to impulse response functions and the resulting dynamic value decompositions (DVDs). These methods quantify the exposures of macroeconomic cash flows to shocks over alternative investment horizons and the corresponding prices or investors’ compensations. We extend the continuous-time methods developed in Hansen and Scheinkman (2012) and Borovi?ka et al. (2011) by constructing discrete-time, state-dependent, shock-exposure and shock-price elasticities as functions of the investment horizon. Our methods are applicable to economic models that are nonlinear, including models with stochastic volatility.  相似文献   

19.
This paper develops new results for identification and estimation of Gaussian affine term structure models. We establish that three popular canonical representations are unidentified, and demonstrate how unidentified regions can complicate numerical optimization. A separate contribution of the paper is the proposal of minimum-chi-square estimation as an alternative to MLE. We show that, although it is asymptotically equivalent to MLE, it can be much easier to compute. In some cases, MCSE allows researchers to recognize with certainty whether a given estimate represents a global maximum of the likelihood function and makes feasible the computation of small-sample standard errors.  相似文献   

20.
Traditional stochastic frontier models impose inefficient behavior on all firms in the sample of interest. If the data under investigation represent a mixture of both fully efficient and inefficient firms then off-the-shelf frontier models are statistically inadequate. We introduce the zero inefficiency stochastic frontier model which can accommodate the presence of both efficient and inefficient firms in the sample. We derive the corresponding log-likelihood function, conditional mean of inefficiency, to estimate observation-specific inefficiency and discuss testing for the presence of fully efficient firms. We provide both simulated evidence as well as an empirical example which demonstrates the applicability of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号