共查询到3条相似文献,搜索用时 0 毫秒
1.
Machine learning for pricing American options in high-dimensional Markovian and non-Markovian models
In this paper we propose two efficient techniques which allow one to compute the price of American basket options. In particular, we consider a basket of assets that follow a multi-dimensional Black–Scholes dynamics. The proposed techniques, called GPR Tree (GRP-Tree) and GPR Exact Integration (GPR-EI), are both based on Machine Learning, exploited together with binomial trees or with a closed form formula for integration. Moreover, these two methods solve the backward dynamic programing problem considering a Bermudan approximation of the American option. On the exercise dates, the value of the option is first computed as the maximum between the exercise value and the continuation value and then approximated by means of Gaussian Process Regression. The two methods mainly differ in the approach used to compute the continuation value: a single step of the binomial tree or integration according to the probability density of the process. Numerical results show that these two methods are accurate and reliable in handling American options on very large baskets of assets. Moreover we also consider the rough Bergomi model, which provides stochastic volatility with memory. Despite that this model is only bidimensional, the whole history of the process impacts on the price, and how to handle all this information is not obvious at all. To this aim, we present how to adapt the GPR-Tree and GPR-EI methods and we focus on pricing American options in this non-Markovian framework. 相似文献
2.
Ting Chen 《Quantitative Finance》2013,13(11):1695-1708
We present a new method for truncating binomial trees based on using a tolerance to control truncation errors and apply it to the Tian tree together with acceleration techniques of smoothing and Richardson extrapolation. For both the current (based on standard deviations) and the new (based on tolerance) truncation methods, we test different truncation criteria, levels and replacement values to obtain the best combination for each required level of accuracy. We also provide numerical results demonstrating that the new method can be 50% faster than previously presented methods when pricing American put options in the Black–Scholes model. 相似文献
3.
Marat V. Kramin Saikat Nandi Alexander L. Shulman 《Review of Quantitative Finance and Accounting》2008,31(4):359-378
This article presents a numerically efficient approach for constructing an interest rate lattice for multi-state variable
multi-factor term structure models in the Makovian HJM [Econometrica 70 (1992) 77] framework based on Monte Carlo simulation and an advanced extension to the Markov Chain Approximation technique. The
proposed method is a mix of Monte Carlo and lattice-based methods and combines the best from both of them. It provides significant
computational advantages and flexibility with respect to many existing multi-factor model implementations for interest rates
derivatives valuation and hedging in the HJM framework.
相似文献
Alexander L. ShulmanEmail: |