首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 10 毫秒
1.
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899–1922], Piterbarg [Risk, 2007, April, 84–89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61–66]—and the local volatility model incorporating stochastic interest rates—see e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66–71], Deelstra and Rayée [Appl. Math. Finance, 2012, 1–23], Ren et al. [Risk, 2007, 20, 138–143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and ‘cheap to evaluate’ approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005–1034], [SIAM J. Sci. Comput., 2005, 27, 1118–1139], [Math. Models Methods Appl. Sci., 2012, 22, 1–33], [SIAM J. Numer. Anal., 2008, 46, 2309–2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1–19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.  相似文献   

2.
This paper analyses the robustness of Least-Squares Monte Carlo, a technique proposed by Longstaff and Schwartz (2001) for pricing American options. This method is based on least-squares regressions in which the explanatory variables are certain polynomial functions. We analyze the impact of different basis functions on option prices. Numerical results for American put options show that this approach is quite robust to the choice of basis functions. For more complex derivatives, this choice can slightly affect option prices. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
亚式期权定价的模拟方法研究   总被引:1,自引:0,他引:1  
由于算术平均价格亚式期权的定价没有解析公式,所以文章用Monte Carlo模拟方法通过Matlab软件编写程序对亚式期权进行了定价。发现在某些情况下,亚式期权的价值并不是国内外一些研究者所认为的低于相应的欧式期权的价值。  相似文献   

4.
When simulating discrete-time approximations of solutions of stochastic differential equations (SDEs), in particular martingales, numerical stability is clearly more important than some higher order of convergence. Discrete-time approximations of solutions of SDEs with multiplicative noise, similar to the Black–Scholes model, are widely used in simulation in finance. The stability criterion presented in this paper is designed to handle both scenario simulation and Monte Carlo simulation, i.e. both strong and weak approximations. Methods are identified that have the potential to overcome some of the numerical instabilities experienced when using the explicit Euler scheme. This is of particular importance in finance, where martingale dynamics arise frequently and the diffusion coefficients are often multiplicative. Stability regions for a range of schemes are visualized and analysed to provide a methodology for a better understanding of the numerical stability issues that arise from time to time in practice. The result being that schemes that have implicitness in the approximations of both the drift and the diffusion terms exhibit the largest stability regions. Most importantly, it is shown that by refining the time step size one can leave a stability region and may face numerical instabilities, which is not what one is used to experiencing in deterministic numerical analysis.  相似文献   

5.
6.
In Foreign Exchange Markets vanilla and barrier options are traded frequently. The market standard is a cutoff time of 10:00 a.m. in New York for the strike of vanillas and a knock-out event based on a continuously observed barrier in the inter bank market. However, many clients, particularly from Italy, prefer the cutoff and knock-out event to be based on the fixing published by the European Central Bank on the Reuters Page ECB37. These barrier options are called discretely monitored barrier options. While these options can be priced in several models by various techniques, the ECB source of the fixing causes two problems. First of all, it is not tradable, and secondly it is published with a delay of about 10–20 min. We examine here the effect of these problems on the hedge of those options and consequently suggest a cost based on the additional uncertainty encountered.   相似文献   

7.
Abstract

A Monte Carlo (MC) experiment is conducted to study the forecasting performance of a variety of volatility models under alternative data-generating processes (DGPs). The models included in the MC study are the (Fractionally Integrated) Generalized Autoregressive Conditional Heteroskedasticity models ((FI)GARCH), the Stochastic Volatility model (SV), the Long Memory Stochastic Volatility model (LMSV) and the Markov-switching Multifractal model (MSM). The MC study enables us to compare the relative forecasting performance of the models accounting for different characterizations of the latent volatility process: specifications that incorporate short/long memory, autoregressive components, stochastic shocks, Markov-switching and multifractality. Forecasts are evaluated by means of mean squared errors (MSE), mean absolute errors (MAE) and value-at-risk (VaR) diagnostics. Furthermore, complementarities between models are explored via forecast combinations. The results show that (i) the MSM model best forecasts volatility under any other alternative characterization of the latent volatility process and (ii) forecast combinations provide systematic improvements upon most single misspecified models, but are typically inferior to the MSM model even if the latter is applied to data governed by other processes.  相似文献   

8.
Given a multi-dimensional Markov diffusion X, the Malliavin integration by parts formula provides a family of representations of the conditional expectation E[g(X 2)|X1]. The different representations are determined by some localizing functions. We discuss the problem of variance reduction within this family. We characterize an exponential function as the unique integrated mean-square-error minimizer among the class of separable localizing functions. For general localizing functions, we prove existence and uniqueness of the optimal localizing function in a suitable Sobolev space. We also provide a PDE characterization of the optimal solution which allows to draw the following observation : the separable exponential function does not minimize the integrated mean square error, except for the trivial one-dimensional case. We provide an application to a portfolio allocation problem, by use of the dynamic programming principle.Mathematics Subject Classification: 60H07, 65C05, 49-00JEL Classification: G10, C10The authors gratefully acknowledge for the comments raised by an anonymous referee, which helped understanding the existence result of Sect. [4.2] of this paper.  相似文献   

9.
We consider the problem of pricing basket options in a multivariate Black–Scholes or Variance-Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high-dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse-grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster than Monte Carlo or Quasi Monte Carlo methods in dimensions up to 35.  相似文献   

10.
We focus on closed-form option pricing in Heston's stochastic volatility model, where closed-form formulas exist only for a few option types. Most of these closed-form solutions are constructed from characteristic functions. We follow this closed-form approach and derive multivariate characteristic functions depending on at least two spot values for different points in time. The derived characteristic functions are used as building blocks to set up (semi-) analytical pricing formulas for exotic options with payoffs depending on finitely many spot values such as fader options and discretely monitored barrier options. We compare our result with different numerical methods and examine the computational accuracy.  相似文献   

11.
Greeks are the price sensitivities of financial derivatives and are essential for pricing, speculation, risk management, and model calibration. Although the pathwise method has been popular for calculating them, its applicability is problematic when the integrand is discontinuous. To tackle this problem, this paper defines and derives the parameter derivative of a discontinuous integrand of certain functional forms with respect to the parameter of interest. The parameter derivative is such that its integration equals the differentiation of the integration of the aforesaid discontinuous integrand with respect to that parameter. As a result, unbiased Greek formulas for a very broad class of payoff functions and models can be systematically derived. This new method is applied to the Greeks of (1) Asian options under two popular Lévy processes, i.e. Merton's jump-diffusion model and the variance-gamma process, and (2) collateralized debt obligations under the Gaussian copula model. Our Greeks outperform the finite-difference and likelihood ratio methods in terms of accuracy, variance, and computation time.  相似文献   

12.
Abstract

In works on sample survey theory and methods the sample size is usually regarded as determined by the sampling procedure and the total cost of the survey.  相似文献   

13.
This paper provides the explicit solution to the three-factor diffusion model recently proposed by the Danish Society of Actuaries to the Danish industry of life insurance and pensions. The solution is obtained by use of the known general solution to multidimensional linear stochastic differential equation systems. With offset in the explicit solution, we establish the conditional distribution of the future state variables which allows for exact simulation. Using exact simulation, we illustrate how simulation of the system can be improved compared to a standard Euler scheme. In order to analyze the effect of choosing the exact simulation scheme over the traditional Euler approximation scheme frequently applied by practitioners, we carry out a simulation study. We show that due to its recursive nature, the Euler scheme becomes computationally expensive as it requires a small step size in order to minimize discretization errors. Using our exact simulation scheme, one is able to cut these computational costs significantly and obtain even better forecasts. As probability density tail behavior is key to expected investment portfolio performance, we further conduct a risk analysis in which we compare well-known risk measures under both schemes. Finally, we conduct a sensitivity analysis and find that the relative performance of the two schemes depends on the chosen model parameter estimates.  相似文献   

14.
Loss Reserving is a major topic of actuarial sciences with a long tradition and well-established methods – both in science and in practice. With the implementation of Solvency II, stochastic methods and modelling the stochastic behaviour of individual claim portfolios will receive additional attention. The author has recently proposed a three-dimensional (3D) stochastic model of claim development. It models a reasonable claim process from first principle by integrating realistic processes of claim occurrence, claim reporting and claim settlement. This paper investigates the ability of the Chain Ladder (CL) method to adequately forecast outstanding claims within the framework of the 3D model. This allows one to find conditions under which the CL method is adequate for outstanding claim prediction, and others in which it fails. Monte Carlo (MC) simulations are performed, lending support to the theoretic results. The analysis leads to additional suggestions concerning the use of the CL method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号