首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a general computational framework for empirical estimation of financial agent-based models, for which criterion functions have unknown analytical form. For this purpose, we adapt a recently developed nonparametric simulated maximum likelihood estimation based on kernel methods. In combination with the model developed by Brock and Hommes (1998), which is one of the most widely analysed heterogeneous agent models in the literature, we extensively test the properties and behaviour of the estimation framework, as well as its ability to recover parameters consistently and efficiently using simulations. Key empirical findings indicate the statistical insignificance of the switching coefficient but markedly significant belief parameters that define heterogeneous trading regimes with a predominance of trend following over contrarian strategies. In addition, we document a slight proportional dominance of fundamentalists over trend-following chartists in major world markets.  相似文献   

2.
This paper develops a pure simulation-based approach for computing maximum likelihood estimates in latent state variable models using Markov Chain Monte Carlo methods (MCMC). Our MCMC algorithm simultaneously evaluates and optimizes the likelihood function without resorting to gradient methods. The approach relies on data augmentation, with insights similar to simulated annealing and evolutionary Monte Carlo algorithms. We prove a limit theorem in the degree of data augmentation and use this to provide standard errors and convergence diagnostics. The resulting estimator inherits the sampling asymptotic properties of maximum likelihood. We demonstrate the approach on two latent state models central to financial econometrics: a stochastic volatility and a multivariate jump-diffusion models. We find that convergence to the MLE is fast, requiring only a small degree of augmentation.  相似文献   

3.
This paper presents a consistent estimator of a censored linear regression model which does not require knowledge of the distribution of the error term. The estimator considered here applies Duncan's (1982) suggestion that the likelihood function for the censored regression model be treated as a functional of both the unknown regression vector and the unknown error distribution. Our estimator is the majorizing regression vector for this non-parametric likelihood functional. We find conditions which ensure the consistency of the NPMLE. The paper concludes with the results of Monte Carlo experiments which show the NPMLE to be more efficient than Powell's Least Absolute Deviations (LAD) estimator, particularly when the fraction of censored observations is large and the sample size is small.  相似文献   

4.
This paper analyzes spatial Probit models for cross sectional dependent data in a binary choice context. Observations are divided by pairwise groups and bivariate normal distributions are specified within each group. Partial maximum likelihood estimators are introduced and they are shown to be consistent and asymptotically normal under some regularity conditions. Consistent covariance matrix estimators are also provided. Estimates of average partial effects can also be obtained once we characterize the conditional distribution of the latent error. Finally, a simulation study shows the advantages of our new estimation procedure in this setting. Our proposed partial maximum likelihood estimators are shown to be more efficient than the generalized method of moments counterparts.  相似文献   

5.
First difference maximum likelihood (FDML) seems an attractive estimation methodology in dynamic panel data modeling because differencing eliminates fixed effects and, in the case of a unit root, differencing transforms the data to stationarity, thereby addressing both incidental parameter problems and the possible effects of nonstationarity. This paper draws attention to certain pathologies that arise in the use of FDML that have gone unnoticed in the literature and that affect both finite sample performance and asymptotics. FDML uses the Gaussian likelihood function for first differenced data and parameter estimation is based on the whole domain over which the log-likelihood is defined. However, extending the domain of the likelihood beyond the stationary region has certain consequences that have a major effect on finite sample and asymptotic performance. First, the extended likelihood is not the true likelihood even in the Gaussian case and it has a finite upper bound of definition. Second, it is often bimodal, and one of its peaks can be so peculiar that numerical maximization of the extended likelihood frequently fails to locate the global maximum. As a result of these pathologies, the FDML estimator is a restricted estimator, numerical implementation is not straightforward and asymptotics are hard to derive in cases where the peculiarity occurs with non-negligible probabilities. The peculiarities in the likelihood are found to be particularly marked in time series with a unit root. In this case, the asymptotic distribution of the FDMLE has bounded support and its density is infinite at the upper bound when the time series sample size T→∞T. As the panel width n→∞n the pathology is removed and the limit theory is normal. This result applies even for TT fixed and we present an expression for the asymptotic distribution which does not depend on the time dimension. We also show how this limit theory depends on the form of the extended likelihood.  相似文献   

6.
Pseudo maximum likelihood estimates are developed for higher-order spatial autoregressive models with increasingly many parameters, including models with spatial lags in the dependent variables both with and without a linear or nonlinear regression component, and regression models with spatial autoregressive disturbances. Consistency and asymptotic normality of the estimates are established. Monte Carlo experiments examine finite-sample behaviour.  相似文献   

7.
The iterative algorithm suggested by Greene (1982) for the estimation of stochastic frontier production models does not necessarily solve the likelihood equations. Corrected iterative algorithms which generalize Fair's method (1977) and solve the likelihood equations are derived. These algorithms are compared with the Newton method in an empirical case. The Newton method is more time saving than these algorithms.  相似文献   

8.
The productive efficiency of a firm can be seen as composed of two parts, one persistent and one transient. The received empirical literature on the measurement of productive efficiency has paid relatively little attention to the difference between these two components. Ahn and Sickles (Econ Rev 19(4):461–492, 2000) suggested some approaches that pointed in this direction. The possibility was also raised in Greene (Health Econ 13(10):959–980, 2004. doi:10.1002/hec.938), who expressed some pessimism over the possibility of distinguishing the two empirically. Recently, Colombi (A skew normal stochastic frontier model for panel data, 2010) and Kumbhakar and Tsionas (J Appl Econ 29(1):110–132, 2012), in a milestone extension of the stochastic frontier methodology have proposed a tractable model based on panel data that promises to provide separate estimates of the two components of efficiency. The approach developed in the original presentation proved very cumbersome actually to implement in practice. Colombi (2010) notes that FIML estimation of the model is ‘complex and time consuming.’ In the sequence of papers, Colombi (2010), Colombi et al. (A stochastic frontier model with short-run and long-run inefficiency random effects, 2011, J Prod Anal, 2014), Kumbhakar et al. (J Prod Anal 41(2):321–337, 2012) and Kumbhakar and Tsionas (2012) have suggested other strategies, including a four step least squares method. The main point of this paper is that full maximum likelihood estimation of the model is neither complex nor time consuming. The extreme complexity of the log likelihood noted in Colombi (2010), Colombi et al. (2011, 2014) is reduced by using simulation and exploiting the Butler and Moffitt (Econometrica 50:761–764, 1982) formulation. In this paper, we develop a practical full information maximum simulated likelihood estimator for the model. The approach is very effective and strikingly simple to apply, and uses all of the sample distributional information to obtain the estimates. We also implement the panel data counterpart of the Jondrow et al. (J Econ 19(2–3):233–238, 1982) estimator for technical or cost inefficiency. The technique is applied in a study of the cost efficiency of Swiss railways.  相似文献   

9.
Quasi maximum likelihood estimation and inference in multivariate volatility models remains a challenging computational task if, for example, the dimension of the parameter space is high. One of the reasons is that typically numerical procedures are used to compute the score and the Hessian, and often they are numerically unstable. We provide analytical formulae for the score and the Hessian for a variety of multivariate GARCH models including the Vec and BEKK specifications as well as the recent dynamic conditional correlation model. By means of a Monte Carlo investigation of the BEKK–GARCH model we illustrate that employing analytical derivatives for inference is clearly preferable to numerical methods.  相似文献   

10.
We investigate the finite sample properties of the maximum likelihood estimator for the spatial autoregressive model. A stochastic expansion of the score function is used to develop the second-order bias and mean squared error of the maximum likelihood estimator. We show that the results can be expressed in terms of the expectations of cross products of quadratic forms, or ratios of quadratic forms in a normal vector which can be evaluated using the top order invariant polynomial. Our numerical calculations demonstrate that the second-order behaviors of the maximum likelihood estimator depend on the degree of sparseness of the weights matrix.  相似文献   

11.
This paper concerns estimating parameters in a high-dimensional dynamic factor model by the method of maximum likelihood. To accommodate missing data in the analysis, we propose a new model representation for the dynamic factor model. It allows the Kalman filter and related smoothing methods to evaluate the likelihood function and to produce optimal factor estimates in a computationally efficient way when missing data is present. The implementation details of our methods for signal extraction and maximum likelihood estimation are discussed. The computational gains of the new devices are presented based on simulated data sets with varying numbers of missing entries.  相似文献   

12.
This paper develops an exact maximum likelihood technique for estimating linear models with second-order autoregressive errors, which utilizes the full set of observations, and explicitly constrains the estimates of the error process to satisfy a priori stationarity conditions. A non- linear solution technique which is new to econometrics and works very efficiently is put forward as part of the estimating procedure. Empirical results are presented which emphasize the importance of utilizing the full set of observations and the associated stationarity restrictions.  相似文献   

13.
The existence and strong consistency of the maximum likelihood estimator are analyzed in the context of dichotomous logit models. Sufficient conditions are given for the asymptotic normality of this estimator.  相似文献   

14.
We propose a new method for estimating dynamic panel data models with selection. The method uses backward substitution for the lagged dependent variable, which leads to an estimating equation that requires correcting for contemporaneous selection only. The estimator is valid under relatively weak assumptions about errors and permits avoiding the weak instruments problem associated with differencing. We also propose a simple test for selection bias that is based on the addition of a selection term to the first‐difference equation and subsequent testing for significance of this term. The methods are applied to estimating dynamic earnings equations for women. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper develops a new estimator for the impulse response functions in structural factor models with a fixed number of over-identifying restrictions. The proposed identification scheme nests the conventional just-identified recursive scheme as a special case. We establish the asymptotic distributions of the new estimator and develop test statistics for the over-identifying restrictions. Simulation results show that adding a few more over-identifying restrictions can lead to a substantial improvement in estimation accuracy for impulse response functions at both zero and nonzero horizons. We estimate the effects of a monetary policy shock using a U.S. data set. The results show that our over-identified scheme can help to detect incorrect specifications that lead to spurious impulse responses.  相似文献   

16.
We show how the dynamic logit model for binary panel data may be approximated by a quadratic exponential model. Under the approximating model, simple sufficient statistics exist for the subject-specific parameters introduced to capture the unobserved heterogeneity between subjects. The latter must be distinguished from the state dependence which is accounted for by including the lagged response variable among the regressors. By conditioning on the sufficient statistics, we derive a pseudo conditional likelihood estimator of the structural parameters of the dynamic logit model, which is simple to compute. Asymptotic properties of this estimator are studied in detail. Simulation results show that the estimator is competitive in terms of efficiency with estimators recently proposed in the econometric literature.  相似文献   

17.
If the supremum in the definition of the maximum likelihood test is replaced by the essential supremum, conditions for asymptotic optimality can be relaxed.This research was supported in part by NSF research grant number GP 31123X.  相似文献   

18.
Dr. H. Kaufmann 《Metrika》1988,35(1):291-313
Summary For quantal and ordinal response models, conditions on existence and uniqueness of maximum likelhood estimates are presented. Results are derived from general results on direction sets and spaces associated with a proper concave function. If each summand of the log likelihood is in any direction either strictly concave or affine, necessary and sufficient conditions are obtained. If all cell counts are strictly positive, then it is shown that estimates always exist, and that they are unique if all parameters are identifiable. If estimates exist without being unique, results on uniquely estimable linear functions are given, paralleling corresponding results in linear regression. An extension of the maximum likelihood principle is outlined yielding similar results even if the likelihood does not attain its supremum. The logit model, the linear probability model, cumulative and sequential models and binomial response models are considered in detail.  相似文献   

19.
For estimatingp(⩾ 2) independent Poisson means, the paper considers a compromise between maximum likelihood and empirical Bayes estimators. Such compromise estimators enjoy both good componentwise as well as ensemble properties. Research supported by the NSF Grant Number MCS-8218091.  相似文献   

20.
We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss-Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号