共查询到4条相似文献,搜索用时 0 毫秒
1.
We propose two new semiparametric specification tests which test whether a vector of conditional moment conditions is satisfied for any vector of parameter values θ0. Unlike most existing tests, our tests are asymptotically valid under weak and/or partial identification and can accommodate discontinuities in the conditional moment functions. Our tests are moreover consistent provided that identification is not too weak. We do not require the availability of a consistent first step estimator. Like Robinson [Robinson, Peter M., 1987. Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form. Econometrica 55, 875–891] and many others in similar problems subsequently, we use k-nearest neighbor (knn) weights instead of kernel weights. The advantage of using knn weights is that local power is invariant to transformations of the instruments and that under strong point identification computation of the test statistic yields an efficient estimator of θ0 as a byproduct. 相似文献
2.
Theoretical models of multi-unit, uniform-price auctions assume that the price is given by the highest losing bid. In practice, however, the price is usually given by the lowest winning bid. We derive the equilibrium bidding function of the lowest-winning-bid auction when there are k objects for sale and n bidders with unit demand, and prove that it converges to the bidding function of the highest-losing-bid auction if and only if the number of losers n−k gets large. When the number of losers grows large, the bidding functions converge at a linear rate and the prices in the two auctions converge in probability to the expected value of an object to the marginal winner. 相似文献
3.
We study the problem of testing hypotheses on the parameters of one- and two-factor stochastic volatility models (SV), allowing for the possible presence of non-regularities such as singular moment conditions and unidentified parameters, which can lead to non-standard asymptotic distributions. We focus on the development of simulation-based exact procedures–whose level can be controlled in finite samples–as well as on large-sample procedures which remain valid under non-regular conditions. We consider Wald-type, score-type and likelihood-ratio-type tests based on a simple moment estimator, which can be easily simulated. We also propose a C(α)-type test which is very easy to implement and exhibits relatively good size and power properties. Besides usual linear restrictions on the SV model coefficients, the problems studied include testing homoskedasticity against a SV alternative (which involves singular moment conditions under the null hypothesis) and testing the null hypothesis of one factor driving the dynamics of the volatility process against two factors (which raises identification difficulties). Three ways of implementing the tests based on alternative statistics are compared: asymptotic critical values (when available), a local Monte Carlo (or parametric bootstrap) test procedure, and a maximized Monte Carlo (MMC) procedure. The size and power properties of the proposed tests are examined in a simulation experiment. The results indicate that the C(α)-based tests (built upon the simple moment estimator available in closed form) have good size and power properties for regular hypotheses, while Monte Carlo tests are much more reliable than those based on asymptotic critical values. Further, in cases where the parametric bootstrap appears to fail (for example, in the presence of identification problems), the MMC procedure easily controls the level of the tests. Moreover, MMC-based tests exhibit relatively good power performance despite the conservative feature of the procedure. Finally, we present an application to a time series of returns on the Standard and Poor’s Composite Price Index. 相似文献
4.
Timothy J. Vogelsang 《Journal of econometrics》2012,166(2):303-319
This paper develops an asymptotic theory for test statistics in linear panel models that are robust to heteroskedasticity, autocorrelation and/or spatial correlation. Two classes of standard errors are analyzed. Both are based on nonparametric heteroskedasticity autocorrelation (HAC) covariance matrix estimators. The first class is based on averages of HAC estimators across individuals in the cross-section, i.e. “averages of HACs”. This class includes the well known cluster standard errors analyzed by Arellano (1987) as a special case. The second class is based on the HAC of cross-section averages and was proposed by Driscoll and Kraay (1998). The ”HAC of averages” standard errors are robust to heteroskedasticity, serial correlation and spatial correlation but weak dependence in the time dimension is required. The “averages of HACs” standard errors are robust to heteroskedasticity and serial correlation including the nonstationary case but they are not valid in the presence of spatial correlation. The main contribution of the paper is to develop a fixed-b asymptotic theory for statistics based on both classes of standard errors in models with individual and possibly time fixed-effects dummy variables. The asymptotics is carried out for large time sample sizes for both fixed and large cross-section sample sizes. Extensive simulations show that the fixed-b approximation is usually much better than the traditional normal or chi-square approximation especially for the Driscoll-Kraay standard errors. The use of fixed-b critical values will lead to more reliable inference in practice especially for tests of joint hypotheses. 相似文献