首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper conducts a broad-based comparison of iterated and direct multi-period forecasting approaches applied to both univariate and multivariate models in the form of parsimonious factor-augmented vector autoregressions. To account for serial correlation in the residuals of the multi-period direct forecasting models we propose a new SURE-based estimation method and modified Akaike information criteria for model selection. Empirical analysis of the 170 variables studied by Marcellino, Stock and Watson (2006) shows that information in factors helps improve forecasting performance for most types of economic variables although it can also lead to larger biases. It also shows that SURE estimation and finite-sample modifications to the Akaike information criterion can improve the performance of the direct multi-period forecasts.  相似文献   

2.
Bayesian stochastic search for VAR model restrictions   总被引:1,自引:0,他引:1  
We propose a Bayesian stochastic search approach to selecting restrictions for vector autoregressive (VAR) models. For this purpose, we develop a Markov chain Monte Carlo (MCMC) algorithm that visits high posterior probability restrictions on the elements of both the VAR regression coefficients and the error variance matrix. Numerical simulations show that stochastic search based on this algorithm can be effective at both selecting a satisfactory model and improving forecasting performance. To illustrate the potential of our approach, we apply our stochastic search to VAR modeling of inflation transmission from producer price index (PPI) components to the consumer price index (CPI).  相似文献   

3.
This paper considers the issue of selecting the number of regressors and the number of structural breaks in multivariate regression models in the possible presence of multiple structural changes. We develop a modified Akaike information criterion (AIC), a modified Mallows’ Cp criterion and a modified Bayesian information criterion (BIC). The penalty terms in these criteria are shown to be different from the usual terms. We prove that the modified BIC consistently selects the regressors and the number of breaks whereas the modified AIC and the modified Cp criterion tend to overfit with positive probability. The finite sample performance of these criteria is investigated through Monte Carlo simulations and it turns out that our modification is successful in comparison to the classical model selection criteria and the sequential testing procedure robust to heteroskedasticity and autocorrelation.  相似文献   

4.
The paper considers n-dimensional VAR models for variables exhibiting cointegration and common cyclical features. Two specific reduced rank vector error correction models are discussed. In one, named the “strong form” and denoted by SF, the collection of all coefficient matrices of a VECM has rank less than n, in the other, named the “weak form” and denoted by WF, the collection of all coefficient matrices except the matrix of coefficient of error correction terms has rank less than n. The paper explores the theoretical connections between these two forms, suggests asymptotic tests for each form and examines the small sample properties of these tests by Monte Carlo simulations.  相似文献   

5.
A popular macroeconomic forecasting strategy utilizes many models to hedge against instabilities of unknown timing; see (among others) Stock and Watson (2004), Clark and McCracken (2010), and Jore et al. (2010). Existing studies of this forecasting strategy exclude dynamic stochastic general equilibrium (DSGE) models, despite the widespread use of these models by monetary policymakers. In this paper, we use the linear opinion pool to combine inflation forecast densities from many vector autoregressions (VARs) and a policymaking DSGE model. The DSGE receives a substantial weight in the pool (at short horizons) provided the VAR components exclude structural breaks. In this case, the inflation forecast densities exhibit calibration failure. Allowing for structural breaks in the VARs reduces the weight on the DSGE considerably, but produces well-calibrated forecast densities for inflation.  相似文献   

6.
The ranking of multivariate volatility models is inherently problematic because when the unobservable volatility is substituted by a proxy, the ordering implied by a loss function may be biased with respect to the intended one. We point out that the size of the distortion is strictly tied to the level of the accuracy of the volatility proxy. We propose a generalized necessary and sufficient functional form for a class of non-metric distance measures of the Bregman type which ensure consistency of the ordering when the target is observed with noise. An application to three foreign exchange rates is provided.  相似文献   

7.
We propose new information criteria for impulse response function matching estimators (IRFMEs). These estimators yield sampling distributions of the structural parameters of dynamic stochastic general equilibrium (DSGE) models by minimizing the distance between sample and theoretical impulse responses. First, we propose an information criterion to select only the responses that produce consistent estimates of the true but unknown structural parameters: the Valid Impulse Response Selection Criterion (VIRSC). The criterion is especially useful for mis-specified models. Second, we propose a criterion to select the impulse responses that are most informative about DSGE model parameters: the Relevant Impulse Response Selection Criterion (RIRSC). These criteria can be used in combination to select the subset of valid impulse response functions with minimal dimension that yields asymptotically efficient estimators. The criteria are general enough to apply to impulse responses estimated by VARs, local projections, and simulation methods. We show that the use of our criteria significantly affects estimates and inference about key parameters of two well-known new Keynesian DSGE models. Monte Carlo evidence indicates that the criteria yield gains in terms of finite sample bias as well as offering tests statistics whose behavior is better approximated by the first order asymptotic theory. Thus, our criteria improve existing methods used to implement IRFMEs.  相似文献   

8.
Reduced rank regression (RRR) models with time varying heterogeneity are considered. Standard information criteria for selecting cointegrating rank are shown to be weakly consistent in semiparametric RRR models in which the errors have general nonparametric short memory components and shifting volatility provided the penalty coefficient Cn→∞Cn and Cn/n→0Cn/n0 as n→∞n. The AIC criterion is inconsistent and its limit distribution is given. The results extend those in Cheng and Phillips (2009a) and are useful in empirical work where structural breaks or time evolution in the error variances is present. An empirical application to exchange rate data is provided.  相似文献   

9.
Cointegration ideas as introduced by Granger in 1981 are commonly embodied in empirical macroeconomic modelling through the vector error correction model (VECM). It has become common practice in these models to treat some variables as weakly exogenous, resulting in conditional VECMs. This paper studies the consequences of different approaches to weak exogeneity for the dynamic properties of such models, in the context of two models of the UK economy, one a national-economy model, the other the UK submodel of a global model. Impulse response and common trend analyses are shown to be sensitive to these assumptions and other specification choices.  相似文献   

10.
Skepticism toward traditional identifying assumptions based on exclusion restrictions has led to a surge in the use of structural VAR models in which structural shocks are identified by restricting the sign of the responses of selected macroeconomic aggregates to these shocks. Researchers commonly report the vector of pointwise posterior medians of the impulse responses as a measure of central tendency of the estimated response functions, along with pointwise 68% posterior error bands. It can be shown that this approach cannot be used to characterize the central tendency of the structural impulse response functions. We propose an alternative method of summarizing the evidence from sign-identified VAR models designed to enhance their practical usefulness. Our objective is to characterize the most likely admissible model(s) within the set of structural VAR models that satisfy the sign restrictions. We show how the set of most likely structural response functions can be computed from the posterior mode of the joint distribution of admissible models both in the fully identified and in the partially identified case, and we propose a highest-posterior density credible set that characterizes the joint uncertainty about this set. Our approach can also be used to resolve the long-standing problem of how to conduct joint inference on sets of structural impulse response functions in exactly identified VAR models. We illustrate the differences between our approach and the traditional approach for the analysis of the effects of monetary policy shocks and of the effects of oil demand and oil supply shocks.  相似文献   

11.
Testing for structural stability of factor augmented forecasting models   总被引:1,自引:0,他引:1  
Mild factor loading instability, particularly if sufficiently independent across the different constituent variables, does not affect the estimation of the number of factors, nor subsequent estimation of the factors themselves (see e.g.  Stock and Watson (2009)). This result does not hold in the presence of large common breaks in the factor loadings, however. In this case, information criteria overestimate the number of breaks. Additionally, estimated factors are no longer consistent estimators of “true” factors. Hence, various recent research papers in the diffusion index literature focus on testing the constancy of factor loadings. However, forecast failure of factor augmented models can be due to either factor loading instability, regression coefficient instability, or both. To address this issue, we develop a test for the joint hypothesis of structural stability of both factor loadings and factor augmented forecasting model regression coefficients. Our proposed test statistic has a chi-squared limiting distribution, and we are able to establish the first order validity of (block) bootstrap critical values. Empirical evidence is also presented for 11 US macroeconomic indicators.  相似文献   

12.
We derive indirect estimators of conditionally heteroskedastic factor models in which the volatilities of common and idiosyncratic factors depend on their past unobserved values by calibrating the score of a Kalman-filter approximation with inequality constraints on the auxiliary model parameters. We also propose alternative indirect estimators for large-scale models, and explain how to apply our procedures to many other dynamic latent variable models. We analyse the small sample behaviour of our indirect estimators and several likelihood-based procedures through an extensive Monte Carlo experiment with empirically realistic designs. Finally, we apply our procedures to weekly returns on the Dow 30 stocks.  相似文献   

13.
This paper develops a new estimator for the impulse response functions in structural factor models with a fixed number of over-identifying restrictions. The proposed identification scheme nests the conventional just-identified recursive scheme as a special case. We establish the asymptotic distributions of the new estimator and develop test statistics for the over-identifying restrictions. Simulation results show that adding a few more over-identifying restrictions can lead to a substantial improvement in estimation accuracy for impulse response functions at both zero and nonzero horizons. We estimate the effects of a monetary policy shock using a U.S. data set. The results show that our over-identified scheme can help to detect incorrect specifications that lead to spurious impulse responses.  相似文献   

14.
It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in finite discrete samples and in large in-fill samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein–Uhlenbeck process with a known long run mean when discretely sampled data are available. The first expression mimics the bias formula of Marriott and Pope (1954) for the discrete time model. Simulations show that this expression does not work satisfactorily when the speed of mean reversion is slow. Slow mean reversion corresponds to the near unit root situation and is empirically realistic for financial time series. An improvement is made in the second expression where a nonlinear correction term is included into the bias formula. It is shown that the nonlinear term is important in the near unit root situation. Simulations indicate that the second expression captures the magnitude, the curvature and the non-monotonicity of the actual bias better than the first expression.  相似文献   

15.
Exchange rate forecasting is hard and the seminal result of Meese and Rogoff [Meese, R., Rogoff, K., 1983. Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics 14, 3–24] that the exchange rate is well approximated by a driftless random walk, at least for prediction purposes, still stands despite much effort at constructing other forecasting models. However, in several other macro and financial forecasting applications, researchers in recent years have considered methods for forecasting that effectively combine the information in a large number of time series. In this paper, I apply one such method for pooling forecasts from several different models, Bayesian Model Averaging, to the problem of pseudo out-of-sample exchange rate predictions. For most currency–horizon pairs, the Bayesian Model Averaging forecasts using a sufficiently high degree of shrinkage, give slightly smaller out-of-sample mean square prediction error than the random walk benchmark. The forecasts generated by this model averaging methodology are however very close to, but not identical to, those from the random walk forecast.  相似文献   

16.
In this paper we propose an approach to both estimate and select unknown smooth functions in an additive model with potentially many functions. Each function is written as a linear combination of basis terms, with coefficients regularized by a proper linearly constrained Gaussian prior. Given any potentially rank deficient prior precision matrix, we show how to derive linear constraints so that the corresponding effect is identified in the additive model. This allows for the use of a wide range of bases and precision matrices in priors for regularization. By introducing indicator variables, each constrained Gaussian prior is augmented with a point mass at zero, thus allowing for function selection. Posterior inference is calculated using Markov chain Monte Carlo and the smoothness in the functions is both the result of shrinkage through the constrained Gaussian prior and model averaging. We show how using non-degenerate priors on the shrinkage parameters enables the application of substantially more computationally efficient sampling schemes than would otherwise be the case. We show the favourable performance of our approach when compared to two contemporary alternative Bayesian methods. To highlight the potential of our approach in high-dimensional settings we apply it to estimate two large seemingly unrelated regression models for intra-day electricity load. Both models feature a variety of different univariate and bivariate functions which require different levels of smoothing, and where component selection is meaningful. Priors for the error disturbance covariances are selected carefully and the empirical results provide a substantive contribution to the electricity load modelling literature in their own right.  相似文献   

17.
A restricted forecasting compatibility test for Vector Autoregressive Error Correction models is analyzed in this work. It is shown that a variance–covariance matrix associated with the restrictions can be used to cancel out model dynamics and interactions between restrictions. This allows us to interpret the joint compatibility test as a composition of the corresponding single restriction compatibility tests. These tests are useful for appreciating the contribution of each and every restriction to the joint compatibility between the whole set of restrictions and the unrestricted forecasts. An estimated process adjustment for the test is derived and the resulting feasible joint compatibility test turns out to have better performance than the original one. An empirical illustration of the usefulness of the proposed test makes use of Mexican macroeconomic data and the targets proposed by the Mexican Government for the year 2003.  相似文献   

18.
We address the issue of modelling and forecasting macroeconomic variables using rich datasets by adopting the class of Vector Autoregressive Moving Average (VARMA) models. We overcome the estimation issue that arises with this class of models by implementing an iterative ordinary least squares (IOLS) estimator. We establish the consistency and asymptotic distribution of the estimator for weak and strong VARMA(p,q) models. Monte Carlo results show that IOLS is consistent and feasible for large systems, outperforming the MLE and other linear regression based efficient estimators under alternative scenarios. Our empirical application shows that VARMA models are feasible alternatives when forecasting with many predictors. We show that VARMA models outperform the AR(1), ARMA(1,1), Bayesian VAR, and factor models, considering different model dimensions.  相似文献   

19.
Sequential maximum likelihood and GMM estimators of distributional parameters obtained from the standardised innovations of multivariate conditionally heteroskedastic dynamic regression models evaluated at Gaussian PML estimators preserve the consistency of mean and variance parameters while allowing for realistic distributions. We assess their efficiency, and obtain moment conditions leading to sequential estimators as efficient as their joint ML counterparts. We also obtain standard errors for VaR and CoVaR, and analyse the effects on these measures of distributional misspecification. Finally, we illustrate the small sample performance of these procedures through simulations and apply them to analyse the risk of large eurozone banks.  相似文献   

20.
This paper considers the semiparametric estimation of binary choice sample selection models under a joint symmetry assumption. Our approaches overcome various drawbacks associated with existing estimators. In particular, our method provides root-nn consistent estimators for both the intercept and slope parameters of the outcome equation in a heteroscedastic framework, without the usual cross equation exclusion restriction or parametric specification for the error distribution and/or the form of heteroscedasticity. Our two-step estimators are shown to be consistent and asymptotically normal. A Monte Carlo simulation study indicates the usefulness of our approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号