共查询到8条相似文献,搜索用时 0 毫秒
1.
In this paper, we examine and compare the performance of a variety of continuous‐time volatility models in their ability to capture the behavior of the VIX. The “3/2‐ model” with a diffusion structure which allows the volatility of volatility changes to be highly sensitive to the actual level of volatility is found to outperform all other popular models tested. Analytic solutions for option prices on the VIX under the 3/2‐model are developed and then used to calibrate at‐the‐money market option prices. 相似文献
2.
Fusai, Abrahams, and Sgarra (2006) employed the Wiener–Hopf technique to obtain an exact analytic expression for discretely monitored barrier option prices as the solution to the Black–Scholes partial differential equation. The present work reformulates this in the language of random walks and extends it to price a variety of other discretely monitored path‐dependent options. Analytic arguments familiar in the applied mathematics literature are used to obtain fluctuation identities. This includes casting the famous identities of Baxter and Spitzer in a form convenient to price barrier, first‐touch, and hindsight options. Analyzing random walks killed by two absorbing barriers with a modified Wiener–Hopf technique yields a novel formula for double‐barrier option prices. Continuum limits and continuity correction approximations are considered. Numerically, efficient results are obtained by implementing Padé approximation. A Gaussian Black–Scholes framework is used as a simple model to exemplify the techniques, but the analysis applies to Lévy processes generally. 相似文献
3.
The extended Cox-Ingersoll-Ross (ECIR) models of interest rates allow for time-dependent parameters in the CIR square-root model. This article presents closed-form pathwise unique solutions of these unsolved stochastic differential equations (s.d.e.s) in terms of functionals of their driving Brownian motion and parameters. It is shown that quadratics in solution of linear s.d.e.s solve the ECIR model if and only if the dimension of the model is a positive integer and that this solution can be achieved by construction of a pathwise unique generalized Ornstein-Uhlenbeck process from the ECIR Brownian motion. For real valued dimensions an extension of the time-change theorem of Dubins and Schwarz (1965) is presented and applied to show that a lognormal process solves the model through a stochastic time change. Pathwise equivalence to a rescaled time-changed Bessel square process is also established. These novel results are applied to characterize zero-hitting time and to produce transition density and zero-hitting conditions for the ECIR spot rate. the CIR term structure is then extended to ECIR under no arbitrage, and its solutions and the transition density are represented under a new ECIR martingale measure. the findings are employed to derive a closed-form ECIR bond option valuation formula which generalizes that obtained by CIR (1985). 相似文献
4.
This paper demonstrates the use of term-structure-related securities in the design of dynamic portfolio management strategies that hedge certain systematic jump risks in asset return. Option pricing formulas based on the absence of arbitrage opportunities in this context are also developed. the analysis is for the case where assets returns are driven by a finite number of Brownian motions and an m-variate point process. the inclusion of :the additional traded assets in the term structure makes it possible to hedge systematic jumps imbedded in the m variate point process. 相似文献
5.
We examine the performances of several popular Lévy jump models and some of the most sophisticated affine jump‐diffusion models in capturing the joint dynamics of stock and option prices. We develop efficient Markov chain Monte Carlo methods for estimating parameters and latent volatility/jump variables of the Lévy jump models using stock and option prices. We show that models with infinite‐activity Lévy jumps in returns significantly outperform affine jump‐diffusion models with compound Poisson jumps in returns and volatility in capturing both the physical and risk‐neutral dynamics of the S&P 500 index. We also find that the variance gamma model of Madan, Carr, and Chang with stochastic volatility has the best performance among all the models we consider. 相似文献
6.
In this paper we use the Cox, Ingersoll, and Ross (1985b) single-factor, term structure model and extend it to the pricing of American default-free bond puts. We provide a quasi-analytical formula for these option prices based on recently established mathematical results for Bessel bridges, coupled with the optimal stopping time method. We extend our results to another interest rate contingent claim and provide a quasi-analytical solution for American yield option prices which illustrates the flexibility of our framework. 相似文献
7.
This paper presents a novel method to price discretely monitored single- and double-barrier options in Lévy process-based models. The method involves a sequential evaluation of Hilbert transforms of the product of the Fourier transform of the value function at the previous barrier monitoring date and the characteristic function of the (Esscher transformed) Lévy process. A discrete approximation with exponentially decaying errors is developed based on the Whittaker cardinal series (Sinc expansion) in Hardy spaces of functions analytic in a strip. An efficient computational algorithm is developed based on the fast Hilbert transform that, in turn, relies on the FFT-based Toeplitz matrix–vector multiplication. Our method also provides a natural framework for credit risk applications, where the firm value follows an exponential Lévy process and default occurs at the first time the firm value is below the default barrier on one of a discrete set of monitoring dates. 相似文献
8.
In this paper, we apply Carr's randomization approximation and the operator form of the Wiener‐Hopf method to double barrier options in continuous time. Each step in the resulting backward induction algorithm is solved using a simple iterative procedure that reduces the problem of pricing options with two barriers to pricing a sequence of certain perpetual contingent claims with first‐touch single barrier features. This procedure admits a clear financial interpretation that can be formulated in the language of embedded options. Our approach results in a fast and accurate pricing method that can be used in a rather wide class of Lévy‐driven models including Variance Gamma processes, Normal Inverse Gaussian processes, KoBoL processes, CGMY model, and Kuznetsov's β ‐class. Our method can be applied to double barrier options with arbitrary bounded terminal payoff functions, which, in particular, allows us to price knock‐out double barrier put/call options as well as double‐no‐touch options. 相似文献