首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于灰色预测模型的铁路客运量预测研究   总被引:4,自引:0,他引:4  
在介绍灰色预测基本原理和算法的基础上,应用灰色预测理论开发了基于MATLAB的铁路客运量预测程序,主要功能是以交互的方式输入数据,动态输出显示模型曲线图形和方程。通过建立株洲站旅客发送量的灰色预测模型,说明利用灰色模型预测铁路客运量具有良好的精度,可以为客流组织提供依据。  相似文献   

2.
铁路客运量前景预测模型   总被引:4,自引:2,他引:2  
通过对当前存在的各种预测模型分析,找出其优点与不足,利用统计方法建立了铁路客运前景预测模型。该模型从影响铁路客运量的因素分析入手,选取了与客运量密切相关的指标进行预测,得出较精确的定量预测结果,以便于决策者使用。  相似文献   

3.
铁路客运专线建成后,其运量主要由趋势客运量、转移客运量和诱增客运量3部分组成。指出在转移和诱增客运量预测中应注意OD调查购准确性、服务特性的拟定和模型参数的标定。同时提出客运量分配时应注意的几个原则,以及有待进一步研究的主要问题。  相似文献   

4.
在分析有关铁路客运量预测方法的基础上,针对BP神经网络模型存在的不足,提出基于粒子群优化算法(PSO)优化BP神经网络的参数,即改进的PSO方法(IPSO)。以我国1990—2007年的铁路客运量为研究对象,确定输入样本和输出样本,以及训练集和测试集,建立基于IPSO的BP神经网络优化模型预测铁路客运量。预测结果表明,IPSO-BP网络的算法训练时间短,收敛速度快,预测精度高。  相似文献   

5.
由于传统的预测方法难以对影响铁路客运量变化的因素进行全面考虑,其预测精度不高.选择影响铁路客运量变化的因素:经济社会发展的原生性需求、铁路自身供给能力、不同交通方式、客运价格和旅行费用、运输服务质量等,建立基于自组织数据挖掘的铁路客运量预测模型.通过算例进行验算结果表明,自组织数据挖掘建模预测方法在变量多、数据少、普通的建模预测方法难以胜任建模任务的情况下,可以得到较满意的结果,适宜进行多因素的铁路客运量预测.  相似文献   

6.
阐述灰色马尔可夫链预测模型原理,根据灰色预测思想和马尔可夫链预测思想,将灰色GM(1,1)预测模型结合马尔可夫链状态转移,能较好地反映铁路客运量的发展规律。通过对我国铁路客运量预测的实证分析,说明灰色马尔可夫链预测模型对于具有一定波动性和随机性的铁路客运量有较高的预测精度。  相似文献   

7.
客运量预测反映了未来年度铁路运输的任务和工作量,是合理布局路网的主要依据,是确定铁路建设项目技术标准的重要参考数据,也是其他各行业部门(如机车车辆、人才需求)编制规划的基础资料.但是,客运量预测是在大量不确定因素的基础上研究未来趋势,特别是在经济结构调整时期,新情况、新问题不断涌现,难度越来越大,要求越来越高.因此,利用科学合理的方法预测可靠的客运量是近几年专家学者研究的重点之一.笔者结合向莆铁路沿线具体情况,应用目前国内外使用较为广泛的重力模型、Logit模型等结构模型,选择从铁路分流、其他交通方式转移和经济增长诱发3个方面进行客运量预测.  相似文献   

8.
为提高铁路客运量预测精度,提出Newton插值法对客运量原始数据进行预处理以解决因节假日或重大事件造成的数据异常问题。另外,引入超松弛技术(OR)对铁路客运量预测结果进行修正,提出非线性递减权重改进粒子群算法以优化松弛因子。最后,将Newton插值法、超松弛技术与GM(1,1)和BP神经网络预测相结合,提出铁路客运量Newton-GM-BP-OR组合预测方法,并以北京市铁路客运量预测为例验证预测方法的有效性。研究结果表明,基于Newton插值法处理异常客运量数据的预测效果较基于原始数据序列更好,改进的粒子群算法在求解松弛因子过程中体现出更好的寻优能力和收敛速度,且超松弛技术对GM(1,1)和BP神经网络预测结果的修正也使得Newton-GM-BP-OR组合预测方法具有更高的预测精度。  相似文献   

9.
基于灰色马尔柯夫过程的铁路客运量预测方法研究   总被引:3,自引:0,他引:3  
将铁路客运量预测分为运量趋势预测和运量波动预测,分别采用灰色GM(1,1)模型和马尔柯夫过程进行预测,并将两者结合形成灰色马尔柯夫铁路客运量预测方法。根据1990年—2002年的铁路客运量数据,预测2003年的客运量以检验模型预测效果,并对我国“十一五”期间铁路客运量进行预测,分析证明基于灰色马尔柯夫过程预测方法的预测可信度。  相似文献   

10.
随着我国经济的快速发展和社会进步,旅客出行更加注重运输的便捷性、舒适性、安全性等,客运量规模和增长速度是衡量铁路运营效果的一项重要指标。在分析各种客运量预测模型的基础上,通过对线性回归预测模型的结果进行马尔可夫链改进,可以提高铁路客运量预测的准确性,但回归-马尔可夫预测模型的应用还需要不断完善。  相似文献   

11.
在阐述分形基本理论和分析铁路运输时间序列分形特性的基础上,基于变维分形理论对铁路客货运量进行预测。根据铁路运量分形预测原理及步骤,以全国铁路运量预测为例进行分析,计算得到铁路2012年、2015年、2020年的客货运量,以及2010—2020年的客货运量增长率,并对预测结果进行了具体分析。  相似文献   

12.
在分析径向基神经网络原理和铁路客流时序特征的基础上,建立基于径向基神经网络的铁路短期客流预测模型,通过径向基神经网络把客运量的年规律、周规律等时间属性有机结合,有效解决客流数据的复杂性和非线性问题。以T15次列车为例进行硬座席别的客运量预测结果表明,径向基神经网络预测模型对铁路短期客流的预测效果较好。  相似文献   

13.
在研究TRAMO/SEATS季节调整模型计算方法的基础上,基于我国铁路2002年1月—2010年2月的客运量月度数据,应用Demetra软件,通过季节调整模型参数设置、模型的估计和检验,得到2010年3月—2012年2月的铁路客运量预测值,并对预测结果进行趋势性和季节性分析。研究结果表明,Tramo/Seats季节调整模型的预测精度较高。  相似文献   

14.
运用基于客流性质的铁路客流预测方法对银川—宁东铁路运营初期(2016年)、近期(2023年)和远期(2038年)客流情况进行预测。采用四阶段法对不同性质客流进行生成预测、分布预测和不同交通方式分担预测,通过各种性质客流的叠加,进行总体客流分析,得到研究区域全天客流变化和高峰情况,以及有关客流预测的主要指标。基于客流性质的铁路客流预测方法在客流性质区分明显的情况下,能够具有较好的精确度。  相似文献   

15.
基于新冠肺炎疫情等突发事件对人们日常生活出行的影响,结合X-13ARIMASEATS季节调整模型的自动识别最优ARIMA模型和检测突发事件离群值功能,使用脉冲函数和阶梯函数设计基于离群值的突发事件的干预变量,构建铁路客运量的时间序列ARIMAX干预模型,对铁路客运量近年受到的SARS疫情、铁路客票实名制政策和新冠肺炎疫情等突发事件的冲击趋势进行干预比较分析。结果显示,SARS和新冠肺炎疫情对铁路客运量冲击较大,SARS疫情在冲击滞后的第5~6期铁路客运量基本得到恢复,新冠肺炎疫情对铁路客运量冲击一直在持续中,铁路客运实名制政策实施社会性较强,冲击具有波动性和不稳定性特征,持续时间较短;相对季节调整模型的趋势分析优势,干预模型拟合预测精度显著高于季节调整模型,预测显示我国铁路客运量在缓慢持续回暖中。  相似文献   

16.
在分析目前铁路客流预测研究方法的基础上,根据客运专线是否建成划分为两个阶段选择不同的客流预测方法.依据客运专线客运量预测方案的实施步骤,探讨了初期客运量预测和运营期客运量预测方法.对于正常运营的客运专线,采用分时间周期的客流预测方法,可以对日常客流、特殊时期客流,以及一周中的任意一天或一天中的任意时段客流进行预测,针对性较强,是一种全新的预测思路.  相似文献   

17.
借鉴国内外客运专线资料,对铁路客运专线运输成本的特性及构成进行论述,并从速度目标值与客运量两方面分析对运输成本的影响,说明速度目标值直接影响客运专线的运输成本,而固定成本与客运量无关,变动成本与客运量成正比变化。  相似文献   

18.
基于广义回归神经网络的铁路货运量预测   总被引:1,自引:0,他引:1  
针对BP神经网络预测存在局部极小缺陷和收敛速度慢的问题,提出基于广义回归神经网络(GRNN)的预测模型。基于我国1999—2008年铁路货运量的历史统计数据,应用GRNN模型和混沌BP神经网络模型对铁路货运量进行预测。通过两种预测模型的计算结果比较说明,GRNN模型具有良好的收敛性和较高的精度,而且模型结构简单、计算速度快,具有良好的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号