首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent variable annuities offer participation in the equity market and attractive protection against downside movements. Accurately quantifying this additional equity market risk and robustly hedging options embedded in the guarantees of variable annuities are new challenges for insurance companies. Due to sensitivities of the benefits to tails of the account value distribution, a simple Black–Scholes model is inadequate in preventing excessive liabilities. A model which realistically describes the real world price dynamics over a long time horizon is essential for the risk management of the variable annuities. In this article, both jump risk and volatility risk are considered for risk management of lookback options embedded in guarantees with a ratchet feature. We evaluate relative performances of delta hedging and dynamic discrete risk minimization hedging strategies. Using the underlying as the hedging instrument, we show that, under a Black–Scholes model, local risk minimization hedging can be significantly better than delta hedging. In addition, we compare risk minimization hedging using the underlying with that of using standard options. We demonstrate that, under a Merton's jump diffusion model, hedging using standard options is superior to hedging using the underlying in terms of the risk reduction. Finally, we consider a market model for volatility risks in which the at‐the‐money implied volatility is a state variable. We compute risk minimization hedging by modeling at‐the‐money Black–Scholes implied volatility explicitly; the hedging effectiveness is evaluated, however, under a joint model for the underlying price and implied volatility. Our computational results suggest that, when implied volatility risk is suitably modeled, risk minimization hedging using standard options, compared to hedging using the underlying, can potentially be more effective in risk reduction under both jump and volatility risks.  相似文献   

2.
For a plain vanilla call and three of the more popular exotic (path-dependent) types of options, this study examines the impact of symmetric and asymmetric GARCH processes in returns. The price, delta and gamma of European call options, Black–Scholes implied volatilities and convergence of these factors are all studied, through a simulation of price paths. For comparison, we ensure that the unconditional volatility of each process is identical. The impact of a standard symmetric GARCH volatility structure on the option parameters is usually to bias price and delta downwards, but to bias gamma upwards, sometimes quite considerably. Asymmetric GARCH effects exacerbate this effect, and it varies across the different options. GARCH effects appear not to induce a smile. Finally, as time to maturity shortens, at-the-money call prices and deltas converge slowly but gammas can change wildly when GARCH effects are added.  相似文献   

3.
This study investigates the effects of shareholders’ real options on (i) firm financial performance and (ii) estimations of the implied cost of equity. After measuring the equity value of steady‐state operations using the residual income model, and the abandonment and expansion options using the Black‐Scholes option pricing model, I find that firms with a large expansion (abandonment) option value experience better (worse) financial performance than those with a small such value. I also find that ignoring these options results in a downward bias in implied cost of equity estimates by an average of 1.23 percentage points.  相似文献   

4.
We consider the option pricing model proposed by Mancino and Ogawa, where the implementation of dynamic hedging strategies has a feedback impact on the price process of the underlying asset. We present numerical results showing that the smile and skewness patterns of implied volatility can actually be reproduced as a consequence of dynamical hedging. The simulations are performed using a suitable semi-implicit finite difference method. Moreover, we perform a calibration of the nonlinear model to market data and we compare it with more popular models, such as the Black–Scholes formula, the Jump-Diffusion model and Heston's model. In judging the alternative models, we consider the following issues: (i) the consistency of the implied structural parameters with the times-series data; (ii) out-of-sample pricing; and (iii) parameter uniformity across different moneyness and maturity classes. Overall, nonlinear feedback due to hedging strategies can, at least in part, contribute to the explanation from a theoretical and quantitative point of view of the strong pricing biases of the Black–Scholes formula, although stochastic volatility effects are more important in this regard.  相似文献   

5.
We conduct an empirical comparison of hedging strategies for two different stochastic volatility models proposed in the literature. One is an asymptotic expansion approach and the other is the risk-minimizing approach applied to a Markov-switched geometric Brownian motion. We also compare these with the Black–Scholes delta hedging strategies using historical and implied volatilities. The derivatives we consider are European call options on the NIFTY index of the Indian National Stock Exchange. We compare a few cases with profit and loss data from a trading desk. We find that for the cases that we analyzed, by far the better results are obtained for the Markov-switched geometric Brownian motion.  相似文献   

6.
This paper estimates how the shape of the implied volatility smile and the size of the variance risk premium relate to parameters of GARCH-type time-series models measuring how conditional volatility responds to return shocks. Markets in which return shocks lead to large increases in conditional volatility tend to have larger variance risk premia than markets in which the impact on conditional volatility is slight. Markets in which negative (positive) return shocks lead to larger increases in future volatility than positive (negative) return shocks tend to have downward (upward) sloping implied volatility smiles. Also, differences in how volatility responds to return shocks as measured by GARCH-type models explain much, but not all, of the variations in excess kurtosis and multi-period skewness across different markets.  相似文献   

7.
We present a faster, more accurate technique for estimating implied volatility using the standard partial derivatives of the Black‐Scholes option‐pricing formula. Beside Newton‐Raphson and slower approximation methods, this technique is the first to provide an error tolerance, which is essential for practical application. All existing noniterative approximation methods do not provide error tolerances and have the potential for large errors.  相似文献   

8.
The purpose of the paper is to introduce, in a discrete-time no-arbitrage pricing context, a bridge between the historical and the risk-neutral state vector dynamics which is wider than the one implied by a classical exponential-affine stochastic discount factor (SDF) and to preserve, at the same time, the tractability and flexibility of the associated asset pricing model. This goal is achieved by introducing the notion of exponential-quadratic SDF or, equivalently, the notion of Second-Order Esscher Transform. The log-pricing kernel is specified as a quadratic function of the factor and the associated sources of risk are priced by means of possibly non-linear stochastic first-order and second-order risk-correction coefficients. Focusing on security market models, this approach is developed in the multivariate conditionally Gaussian framework and its usefulness is testified by the specification and calibration of what we name the Second-Order GARCH Option Pricing Model. The associated European Call option pricing formula generates a rich family of implied volatility smiles and skews able to match the typically observed ones.  相似文献   

9.
In this paper it is proved that the Black–Scholes implied volatility satisfies a second order non-linear partial differential equation. The obtained PDE is then used to construct an algorithm for fast and accurate polynomial approximation for Black–Scholes implied volatility that improves on the existing numerical schemes from literature, both in speed and parallelizability. We also show that the method is applicable to other problems, such as approximation of implied Bachelier volatility.  相似文献   

10.
The main purposes of this paper are: (1) to review three alternative methods for deriving option pricing models (OPMs), (2) to discuss the relationship between binomial OPM and Black–Scholes OPM, (3) to compare Cox et al. method and Rendleman and Bartter method for deriving Black–Scholes OPM, (4) to discuss lognormal distribution method to derive Black–Scholes OPM, and (5) to show how the Black–Scholes model can be derived by stochastic calculus. This paper shows that the main methodologies used to derive the Black–Scholes model are: binomial distribution, lognormal distribution, and differential and integral calculus. If we assume risk neutrality, then we don’t need stochastic calculus to derive the Black–Scholes model. However, the stochastic calculus approach for deriving the Black–Scholes model is still presented in Sect. 6. In sum, this paper can help statisticians and mathematicians understand how alternative methods can be used to derive the Black–Scholes option model.  相似文献   

11.
In this paper we compare the out-of-sample performance of two common extensions of the Black–Scholes option pricing model, namely GARCH and stochastic volatility (SV). We calibrate the three models to intraday FTSE 100 option prices and apply two sets of performance criteria, namely out-of-sample valuation errors and Value-at-Risk (VaR) oriented measures. When we analyze the fit to observed prices, GARCH clearly dominates both SV and the benchmark Black–Scholes model. However, the predictions of the market risk from hypothetical derivative positions show sizable errors. The fit to the realized profits and losses is poor and there are no notable differences between the models. Overall, we therefore observe that the more complex option pricing models can improve on the Black–Scholes methodology only for the purpose of pricing, but not for the VaR forecasts.  相似文献   

12.
The volatility of an asset price measures how uncertain we are about future asset price movements. It is one of the factors affecting option price and the only input into the Black–Scholes model that cannot be directly observed. Thus, estimating volatility properly is vital. Two approaches to calculating volatility are historical and implied volatilities. Using index options listed on the Chicago Board of Options Exchange, this paper focuses on historical volatility. Since numerous methods of estimating volatility may provide different results, this paper assesses the impact of volatility estimation method on theoretical option values.  相似文献   

13.
14.
The Black–Scholes implied volatility skew at the money of SPX options is known to obey a power law with respect to the time to maturity. We construct a model of the underlying asset price process which is dynamically consistent to the power law. The volatility process of the model is driven by a fractional Brownian motion with Hurst parameter less than half. The fractional Brownian motion is correlated with a Brownian motion which drives the asset price process. We derive an asymptotic expansion of the implied volatility as the time to maturity tends to zero. For this purpose, we introduce a new approach to validate such an expansion, which enables us to treat more general models than in the literature. The local-stochastic volatility model is treated as well under an essentially minimal regularity condition in order to show such a standard model cannot be dynamically consistent to the power law.  相似文献   

15.
Skewness and Kurtosis Implied by Option Prices: A Correction   总被引:2,自引:0,他引:2  
Corrado and Su (1996) provide skewness and kurtosis adjustment terms for the Black‐Scholes model, using a Gram‐Charlier expansion of the normal density function. In this note we provide a correction to the expression for the skewness coefficient and illustrate the effect on call option prices of the error found.  相似文献   

16.
As a means of validating an option pricing model, we compare the ex-post intra-day realized variance of options with the realized variance of the associated underlying asset that would be implied using assumptions as in the Black and Scholes (BS) model, the Heston, and the Bates model. Based on data for the S&P 500 index, we find that the BS model is strongly directionally biased due to the presence of stochastic volatility. The Heston model reduces the mismatch in realized variance between the two markets, but deviations are still significant. With the exception of short-dated options, we achieve best approximations after controlling for the presence of jumps in the underlying dynamics. Finally, we provide evidence that, although heavily biased, the realized variance based on the BS model contains relevant predictive information that can be exploited when option high-frequency data is not available.  相似文献   

17.
We show that even if options traded with Black–Scholes–Merton pricing under a known and constant volatility, meaning essentially in perfect markets, one would still obtain smiles, skews, and smirks. We detect this problem by pricing options with a known volatility and reverse engineering to back into the implied volatility from the model price that was derived from the assumed volatility. The returned volatilities follow distinctive patterns resulting from algorithmic choices of the user and the quotation unit of the option. In particular, the common practice of penny pricing on option exchanges results in a significant loss of accuracy in implied volatility. For the most common scenarios faced in practice, the problem primarily exists in short-term options, but it manifests for virtually all cases of moneyness of at least 10 % and often 5 %. While it is theoretically possible to almost eliminate the problem, practical limitations in trading prevent any realistic chance of avoiding this error. It is even more difficult to identify and control the problem when smiles also arise from market imperfections, as is widely accepted. We empirically estimate a very conservative lower bound of the effect at about 16 % of the observed smile for 30-day options. Thus, we document a previously unknown phenomenon that a portion of the volatility smile is not of an economic nature. We provide some best-practice recommendations, including the explicit specification of the algorithmic choices and a warning against using off-the-shelf routines.  相似文献   

18.
We study option pricing and hedging with uncertainty about a Black–Scholes reference model which is dynamically recalibrated to the market price of a liquidly traded vanilla option. For dynamic trading in the underlying asset and this vanilla option, delta–vega hedging is asymptotically optimal in the limit for small uncertainty aversion. The corresponding indifference price corrections are determined by the disparity between the vegas, gammas, vannas and volgas of the non-traded and the liquidly traded options.  相似文献   

19.
In this paper, the valuation of stock and index options is analyzed in the context of Merton's model of capital market equilibrium with incomplete information. It is possible to derive a partial differential equation for options in such a context. The derivation gives more understanding of the way an option's future payoff is discounted to the present. In order to estimate some of its parameters, the model is calibrated to market prices. It is tested using market prices and the authors' valuation formula. It is found that model prices are not significantly different from market prices, especially when out-of-the-money and deep-in-the-money options are considered. The model gives an explanation to the “strike bias” and the “smile effect.” Simulations of models based respectively on stochastic volatilities and gamma processes, are in accordance with the findings in this paper concerning biases in the Black and Scholes model, especially for pricing deep-in-the-money and out-of-the-money options. Even if the estimation method has its drawbacks, the costs of gathering and processing information regarding the option and its underlying asset play a central role in explaining the biases observed in the Black and Scholes model and help also the understanding of the U-shaped curve known as the smile of volatilities.  相似文献   

20.
《Quantitative Finance》2013,13(3):292-297
Through a simple Monte Carlo experiment, Dimitrios Gkamas documents the effects that stochastic volatility has on the distribution of returns and the inability of the normal distribution utilized by the Black–Scholes model to fit empirical returns. He goes on to investigate the implied volatility patterns that stochastic volatility models can generate and potentially explain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号