共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper considers a panel data regression model with heteroskedastic as well as serially correlated disturbances, and derives a joint LM test for homoskedasticity and no first order serial correlation. The restricted model is the standard random individual error component model. It also derives a conditional LM test for homoskedasticity given serial correlation, as well as, a conditional LM test for no first order serial correlation given heteroskedasticity, all in the context of a random effects panel data model. Monte Carlo results show that these tests along with their likelihood ratio alternatives have good size and power under various forms of heteroskedasticity including exponential and quadratic functional forms. 相似文献
2.
Helmut Herwartz 《Statistica Neerlandica》2007,61(4):466-487
In the empirical analysis of panel data the Breusch–Pagan (BP) statistic has become a standard tool to infer on unobserved heterogeneity over the cross-section. Put differently, the test statistic is central to discriminate between the pooled regression and the random effects model. Conditional versions of the test statistic have been provided to immunize inference on unobserved heterogeneity against random time effects or patterns of spatial error correlation. Panel data models with spatially correlated error terms are typically set out under the presumption of some known adjacency matrix parameterizing the correlation structure up to a scaling factor. This paper delivers a bootstrap scheme to generate critical values for the BP statistic allowing robust inference under misspecification of the adjacency matrix. Moreover, asymptotic results are derived for the case of a finite cross-section and infinite time dimension. Finite sample simulations show that misspecification of spatial covariance features could lead to large size distortions, while the robust bootstrap procedure retains asymptotic validity. 相似文献
3.
We provide a set of conditions sufficient for consistency of a general class of fixed effects instrumental variables (FE-IV) estimators in the context of a correlated random coefficient panel data model, where one ignores the presence of individual-specific slopes. We discuss cases where the assumptions are met and violated. Monte Carlo simulations verify that the FE-IV estimator of the population averaged effect performs notably better than other standard estimators, provided a full set of period dummies is included. We also propose a simple test of selection bias in unbalanced panels when we suspect the slopes may vary by individual. 相似文献
4.
Valentin Verdier 《Journal of Applied Econometrics》2020,35(7):917-939
Correlated random coefficient (CRC) models provide a useful framework for estimating average treatment effects (ATE) with panel data by accommodating heterogeneous treatment effects and flexible patterns of selection. In their simplest form, they lead to the well-known difference-in-differences estimator. CRC models yield estimates of ATE for “movers” (i.e., cross-sectional units whose treatment status changed over time) while ATE for “stayers” (i.e., cross-sectional units who retained the same treatment status over time) are not identified. We study additional restrictions on selection into treatment that lead to the identification of ATE for stayers by an extrapolation from quantities identified by the CRC model. We discuss estimation and testing of the extrapolation's validity, then use our results to estimate the returns to agricultural technology adoption among maize farmers in Kenya. 相似文献
5.
The most popular econometric models in the panel data literature are the class of linear panel data models with unobserved individual- and/or time-specific effects. The consistency of parameter estimators and the validity of their economic interpretations as marginal effects depend crucially on the correct functional form specification of the linear panel data model. In this paper, a new class of residual-based tests is proposed for checking the validity of dynamic panel data models with both large cross-sectional units and time series dimensions. The individual and time effects can be fixed or random, and panel data can be balanced or unbalanced. The tests can detect a wide range of model misspecifications in the conditional mean of a dynamic panel data model, including functional form and lag misspecification. They check a large number of lags so that they can capture misspecification at any lag order asymptotically. No common alternative is assumed, thus allowing for heterogeneity in the degrees and directions of functional form misspecification across individuals. Thanks to the use of panel data with large and , the proposed nonparametric tests have an asymptotic normal distribution under the null hypothesis without requiring the smoothing parameters to grow with the sample sizes. This suggests better nonparametric asymptotic approximation for the panel data than for time series or cross sectional data. This is confirmed in a simulation study. We apply the new tests to test linear specification of cross-country growth equations and found significant nonlinearities in mean for OECD countries’ growth equation for annual and quintannual panel data. 相似文献
6.
Siem Jan Koopman Marius Ooms ré Lucas Kees van Montfort Victor van der Geest 《Statistica Neerlandica》2008,62(1):104-130
We model panel data of crime careers of juveniles from a Dutch Judicial Juvenile Institution. The data are decomposed into a systematic and an individual-specific component, of which the systematic component reflects the general time-varying conditions including the criminological climate. Within a model-based analysis, we treat (1) shared effects of each group with the same systematic conditions, (2) strongly non-Gaussian features of the individual time series, (3) unobserved common systematic conditions, (4) changing recidivism probabilities in continuous time and (5) missing observations. We adopt a non-Gaussian multivariate state-space model that deals with all these issues simultaneously. The parameters of the model are estimated by Monte Carlo maximum likelihood methods. This paper illustrates the methods empirically. We compare continuous time trends and standard discrete-time stochastic trend specifications. We find interesting common time variation in the recidivism behaviour of the juveniles during a period of 13 years, while taking account of significant heterogeneity determined by personality characteristics and initial crime records. 相似文献
7.
J. Engel 《Statistica Neerlandica》1988,42(1):17-27
From the literature on nonparametric rank tests, limiting distributions of Wilcoxon's test tor symmetry and ot Friedman's test for treatment effect are known for observations that are classified in blocks. It is assumed that there is no interaction between blocks and treatments. In the case of fixed blocks this assumption is quite reasonable, in the case of random blocks it is not, as the presence of a random interaction does not make testing for treatment effect superfluous. For classified, categorical data in random blocks the limiting distribution will be derived in this paper of Wilcoxon's rank test in a model which includes a random interaction between blocks and treatments.
An illustration is given by some data from a judgement comparison experiment for the image quality of Video Long Play discs. 相似文献
An illustration is given by some data from a judgement comparison experiment for the image quality of Video Long Play discs. 相似文献
8.
This paper proposes new unit root tests in the context of a random autoregressive coefficient panel data model, in which the null of a unit root corresponds to the joint restriction that the autoregressive coefficient has unit mean and zero variance. The asymptotic distributions of the test statistics are derived and simulation results are provided to suggest that they perform very well in small samples. 相似文献
9.
Continuous-time modelling remains a somewhat 'idealized' representation tool. Even though conceptualizing a dynamic process as a continuous process has clear appeal from a theoretical standpoint, practical tools that allow researchers to effectively map an idealized continuous model onto a set of discrete-time observed data are still lacking observed data. Irregularly spaced longitudinal data frequently arise in empirical settings because of the prevalence of longitudinal studies with partially randomized measurement intervals and other related designs. We present a practical approach that capitalizes on a nonparametric spline interpolation approach to impute the gaps in irregularly spaced panel data. Simulated and empirical examples are provided to demonstrate the applicability of the proposed approach to studies of group-based dynamics using panel data. 相似文献
10.
This article examines the impact of fixed effects production functions vis-à-vis stochastic production frontiers on technical efficiency measures. An unbalanced panel consisting of 96 Vermont dairy farmers for the 1971–1984 period was used in the analysis. The models examined incorporated both time-variant and time-invariant technical efficiency. The major source of variation in efficiency levels across models stemmed from the assumption made concerning the distribution of the one-sided term in the stochastic frontiers. In general, the fixed effects technique was found superior to the stochastic production frontier methodology. Despite the fact that the results of various statistical tests revealed the superiority of some specifications over others, the overall conclusion of the study is that the efficiency analysis was fairly consistent throughout all the models considered. 相似文献
11.
《管理科学学报(英文)》2019,4(1):28-44
When some of the regressors in a panel data model are correlated with the random individual effects, the random effect (RE) estimator becomes inconsistent while the fixed effect (FE) estimator is consistent. Depending on the various degree of such correlation, we can combine the RE estimator and FE estimator to form a combined estimator which can be better than each of the FE and RE estimators. In this paper, we are interested in whether the combined estimator may be used to form a combined forecast to improve upon the RE forecast (forecast made using the RE estimator) and the FE forecast (forecast using the FE estimator) in out-of-sample forecasting. Our simulation experiment shows that the combined forecast does dominate the FE forecast for all degrees of endogeneity in terms of mean squared forecast errors (MSFE), demonstrating that the theoretical results of the risk dominance for the in-sample estimation carry over to the out-of-sample forecasting. It also shows that the combined forecast can reduce MSFE relative to the RE forecast for moderate to large degrees of endogeneity and for large degrees of heterogeneity in individual effects. 相似文献
12.
We develop methods for inference in nonparametric time-varying fixed effects panel data models that allow for locally stationary regressors and for the time series length and cross-section size both being large. We first develop a pooled nonparametric profile least squares dummy variable approach to estimate the nonparametric function, and establish the optimal convergence rate and asymptotic normality of the resultant estimator. We then propose a test statistic to check whether the bivariate nonparametric function is time-varying or the time effect is separable, and derive the asymptotic distribution of the proposed test statistic. We present several simulated examples and two real data analyses to illustrate the finite sample performance of the proposed methods. 相似文献
13.
A smoothed maximum score estimator for the binary choice panel data model with an application to labour force participation 总被引:1,自引:0,他引:1
In a binary choice panel data model with individual effects and two time periods, Manski proposed the maximum score estimator based on a discontinuous objective function and proved its consistency under weak distributional assumptions. The rate of convergence is low ( N 1/3 ) and its limit distribution cannot easily be used for statistical inference. In this paper we apply the idea of Horowitz to smooth Manski's objective function. The resulting smoothed maximum score estimator is consistent and asymptotically normal with a rate of convergence that can be made arbitrarily close to N 1/2 , depending on the strength of the smoothness assumptions imposed. The estimator can be applied to panels with more than two time periods and to unbalanced panels. We apply the estimator to analyze labour force participation of married Dutch females. 相似文献
14.
Journal of Productivity Analysis - This paper proposes a panel data based stochastic frontier model which accommodates time-invariant unobserved heterogeneity along with efficiency effects. The... 相似文献
15.
Unit root tests are constructed for dynamic panels whose component series are momentum threshold autoregressive processes.
Gaussian null asymptotics are established for the proposed tests. A Monte–Carlo experiment is conducted to compare finite
sample properties of the proposed tests. The tests are illustrated by a real data set. 相似文献
16.
Longitudinal data sets with the structure T (time points) × N (subjects) are often incomplete because of data missing for certain subjects at certain time points. The EM algorithm is applied in conjunction with the Kalman smoother for computing maximum likelihood estimates of longitudinal LISREL models from varying missing data patterns. The iterative procedure uses the LISREL program in the M-step and the Kalman smoother in the E-step. The application of the method is illustrated by simulating missing data on a data set from educational research. 相似文献
17.
We propose a consistent test for a linear functional form against a nonparametric alternative in a fixed effects panel data model. We show that the test has a limiting standard normal distribution under the null hypothesis, and show that the test is a consistent test. We also establish the asymptotic validity of a bootstrap procedure which is used to better approximate the finite sample null distribution of the test statistic. Simulation results show that the proposed test performs well for panel data with a large number of cross-sectional units and a finite number of observations across time. 相似文献
18.
This paper considers a spatial panel data regression model with serial correlation on each spatial unit over time as well as spatial dependence between the spatial units at each point in time. In addition, the model allows for heterogeneity across the spatial units using random effects. The paper then derives several Lagrange multiplier tests for this panel data regression model including a joint test for serial correlation, spatial autocorrelation and random effects. These tests draw upon two strands of earlier work. The first is the LM tests for the spatial error correlation model discussed in Anselin and Bera [1998. Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah, A., Giles, D.E.A. (Eds.), Handbook of Applied Economic Statistics. Marcel Dekker, New York] and in the panel data context by Baltagi et al. [2003. Testing panel data regression models with spatial error correlation. Journal of Econometrics 117, 123–150]. The second is the LM tests for the error component panel data model with serial correlation derived by Baltagi and Li [1995. Testing AR(1) against MA(1) disturbances in an error component model. Journal of Econometrics 68, 133–151]. Hence, the joint LM test derived in this paper encompasses those derived in both strands of earlier works. In fact, in the context of our general model, the earlier LM tests become marginal LM tests that ignore either serial correlation over time or spatial error correlation. The paper then derives conditional LM and LR tests that do not ignore these correlations and contrast them with their marginal LM and LR counterparts. The small sample performance of these tests is investigated using Monte Carlo experiments. As expected, ignoring any correlation when it is significant can lead to misleading inference. 相似文献
19.
It is well known that the standard Breusch and Pagan (1980) LM test for cross-equation correlation in a SUR model is not appropriate for testing cross-sectional dependence in panel data models when the number of cross-sectional units (n) is large and the number of time periods (T) is small. In fact, a scaled version of this LM test was proposed by Pesaran (2004) and its finite sample bias was corrected by Pesaran et al. (2008). This was done in the context of a heterogeneous panel data model. This paper derives the asymptotic bias of this scaled version of the LM test in the context of a fixed effects homogeneous panel data model. This asymptotic bias is found to be a constant related to n and T, which suggests a simple bias corrected LM test for the null hypothesis. Additionally, the paper carries out some Monte Carlo experiments to compare the finite sample properties of this proposed test with existing tests for cross-sectional dependence. 相似文献
20.
This paper investigates identification and estimation of a class of nonlinear panel data, single-index models. The model allows for unknown time-specific link functions, and semiparametric specification of the individual-specific effects. We develop an estimator for the parameters of interest, and propose a powerful new kernel-based modified backfitting algorithm to compute the estimator. We derive uniform rates of convergence results for the estimators of the link functions, and show the estimators of the finite-dimensional parameters are root-N consistent with a Gaussian limiting distribution. We study the small sample properties of the estimator via Monte Carlo techniques. 相似文献