首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Issues of Learning and Knowledge in Technology Education   总被引:1,自引:0,他引:1  
This article examines issues that arise from learning and knowledge in technology education. The issues examined are, first, the definition of technological knowledge and what the nature of that knowledge should be, where the concern is with how we define and think about that knowledge, especially in the context of how students learn and use knowledge in technology education. Second, the relationship between learning and knowledge in particular the inter-relationship between learning and knowledge, focusing on a situated view of learning. The third issue sees learning related to the context within which the learning takes place.This paper will explore these three inter-related issues in four sections. First, an outline of a view of learning that privileges context. Second, there will be a consideration of types of knowledge, namely, procedural and conceptual knowledge. These two types will be elaborated upon through research done at the Open University, particularly on problem solving and design. In discussing conceptual knowledge empirical work in mathematics and science education will be drawn on, along with work on the use of mathematics and science in technology education. Third, it will be argued that qualitative knowledge should become a part of teaching and learning in technology education because it both reflects a view of knowledge stemming from situated learning, and the tasks of technology. The article will end with a research agenda for what we have yet to understand, drawing on the earlier arguments.  相似文献   

2.
An important objective of science and technology education is the development of pupils’ capacity for systems thinking. While in science education the term system relates mainly to structures and phenomena in the natural world, technology education focuses on systems designed to fulfill people’s needs and desires: examples include systems to control the local environment, or the position or motion of objects. Despite the centrality of the system concept to technology and technology education, issues relating to the teaching and learning of systems within the technology curriculum have been little addressed. This paper explores some elemental structures common to technological feedback control systems, and highlights the relationships between the structural nature and the dynamic behavior of these systems. It is argued that the study of systems and control concepts in technology has the potential to promote higher learning skills such as interdisciplinary thinking and modeling, and an instructional framework for achieving this goal is proposed. Questions and research issues on the fostering of systems thinking in technology education are identified.  相似文献   

3.
This paper examines some of the many problems and issues associated with integrating new and developing technologies into the education of future designers. As technology in general races ahead challenges arise for both commercial designers and educators on how best to keep track and utilise the advances. The challenge is particularly acute within tertiary education where the introduction of new cutting edge technology is often encouraged. Although this is generally achieved through the feedback of research activity, integrating new concepts at an appropriate level is a major task. Of particular concern is how focussed areas of applied technology can be made part of the multidisciplinary scope of design education.The paper describes the model used to introduce areas of Artificial Intelligence (AI) to undergraduate industrial design students. The successful interaction of research and education within a UK higher education establishment are discussed and project examples given. It is shown that, through selective tuition of research topics and appropriate technical support, innovative design solutions can result. In addition, it shows that by introducing leading edge and, in some cases, underdeveloped technology, specific key skills of independent learning, communication and research methods can be encouraged.  相似文献   

4.
Conceptual and Procedural Knowledge   总被引:1,自引:0,他引:1  
The ideas that underlie the title of this chapter have been part of a familiar debate in education, namely that of the contrast of content and process. In both science and mathematics similar arguments have taken place, and these debates represent a healthy examination of, not only the aims of science and mathematics education, but the teaching and learning issues, and as such they reflect the relative maturity of these subject areas. Even in technology education, which is still in its infancy as a subject, echoes of these debates exist and there are contrasts of approaches to the balance of process and content across the world. The 'debate' in technology is evangelical in nature, with for example, proponents making claims for problem-solving approaches as a basis for teaching with few accounts and almost no empirical research of what actually happens in classrooms. There is insufficient consideration of the learning issues behind this, or other proposals, and it is timely to turn our attention to student learning. This article examines the nature of technological knowledge and what we know about learning related to it. The article argues that learning procedural and conceptual knowledge associated with technological activity poses challenges for both technology educators and those concerned with research on learning.  相似文献   

5.
When education for sustainable development (ESD) emerged as part of the educational agenda in the international arena, it was associated with significant shifts in the educational debate about the purpose and nature of education and with the need to respond to crises caused by the modern idea of progress. Scientists from different fields warn humanity that the current trajectory of capitalism is leading towards environmental and cultural decline and that urgent measures are required to deal with the current and emerging issues. Global financial and economic crises, poverty and inequality, climate change and environmental degradation reinforce our understanding that a collaborative effort is required in addressing the existing status quo through education. These changing contexts require transformative education that must play a key role in developing a planetary vision, in “securing sustainable life chances, aspirations and futures for young people”. This paper refers to the essence of SD and the ethics behind it, explores current research on ESD in technology education (TE) and suggests a number of challenges that emerged for technology education as a result of the global SD agenda. They are related to policy and curriculum development, teaching and learning, and teacher training. This paper argues that current and future research on ESD in technology education must be framed by a shared vision about quality education and a society that lives in balance with Earth’s carrying capacity. The paper concludes with suggestions for further directions for research associated with the areas of challenge.  相似文献   

6.
This paper investigates developments in the teaching of food technology introduced as an element of design & technology in the 1990 National Curriculum for Technology in the English primary curriculum for children aged five to eleven years. It reviews briefly the situation for food teaching before 1990 and identifies a number of relevant issues. This is followed by an overview of developments in food technology in primary schools between 1992 and 2001, highlighting the need for primary teachers and trainee teachers on initial teacher education courses to develop an understanding of how to teach food technology in their schools. The development of teaching materials through the Nuffield Approach to food technology in primary schools is outlined together with a case study of the use of the materials in initial teacher education at the University of Surrey Roehampton. The paper describes the uptake of Nuffield Primary food technology materials as measured by down loads from the Nuffield Primary Design & Technology web site. Alongside this, there are reflections of primary trainee teachers on the impact of using the Nuffield food technology materials on their classroom practice during school experience. It concludes with a discussion of the key issues arising from the paper and suggestions for future research. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
This paper reviews ideas from design and technology and science education and discusses knowledge, values and skills as aspects of technology in order to demonstrate that technology for design cannot be simply associated with a knowledge component of technology. The paper highlights the linguistic challenges in expressing issues in this area and the philosophical difficulty that the nature of cognitive modelling means that some aspects may be impossible to express using language. Values and a designerly way of knowing and the nature of technological skills are discussed in order to establish their relationship to technology for design. Prior studies concerning technology and designing have focused on engineering and science-based design areas. A research agenda in relation to the proposed broader interpretation of technology for design is discussed, which demonstrates that such research must ultimately be interdisciplinary. Nevertheless, initial steps which could be taken by design researchers are suggested.  相似文献   

8.
This paper explores the issue of how students might learn about sustainability in technology––education classrooms and the relevance of problem-solving in that learning. One of the emerging issues in technology education research is the nature of problem-solving specified in curriculum documents and the kinds of learning activities undertaken by students in technology education classrooms. In parallel with our developing understanding of the characteristics of good technology education programs is the inclusion in recent curriculum documents of the concept of sustainability or sustainable development. However, as yet there is little information about how technology students think about sustainability and how they might best learn about it. This is of particular interest because in technology education, sustainability is often described in curriculum documents as an issue that is intended to be integrated within design projects and activities, rather than being the topic of a classroom lesson as might happen in a subject such as environmental studies. This paper explores current understanding of the issue generally and within technology education. It concludes that the design, problem-solving approach that is common to technology education classrooms provides many affordances to students engaging meaningfully with ideas of sustainability and of developing strong understandings of its scope and significance.  相似文献   

9.
This paper examines recent research in student learning of technological concepts and processes. To explore this area three inter-related aspects are considered; existing concepts of technology, technological knowledge and processes. Different views of technology and technology education are reflected in both research outcomes and curriculum documents. Teacher and student perceptions of technology impact on the way in which technology is undertaken in the classroom. Teacher's perceptions of technology influence what they perceive as being important in learning of technology. student's perceptions of technology and technology education influence what knowledge and skills they operationalise in a technological task and hence affect student technological capability. Technological concepts and processes are often defined in different ways by particular groups. Subject subcultures are strongly held by both teachers and students. The influence of subject subcultures and communities of practice will be discussed in terms of defining and operationalising technological concepts and processes. Technological concepts are not consistently defined in the literature. For students to undertake technological activities, knowledge and processes cannot be divorced. Recent research highlights the problems when processes are emphasised over knowledge. This paper will examine different technological concepts in an attempt to create a critical balance between knowledge and process. Much of the literature in technology education has rightly emphasised definitions, curriculum issues, implementation and teacher training. This paper argues that it is now time to place a great emphasis on in-depth research on student understanding of technological concepts and processes and ways in which these can be enhanced.  相似文献   

10.
New Zealand under went major curriculum reforms in the early 1990's. These reforms were determined by the New Zealand Curriculum Framework which provides an overarching framework for the development of curricula in New Zealand and which defines seven broad essential learning areas rather than subject areas. Technology is important and should be part of the education of all students. Six grounds for developing technology education were given, namely: economic, pedagogic, motivational, cultural, environmental, and personal. This paper reports on the development of a technology curriculum in schools. The philosophy of the curriculum will be discussed, particularly crucial aspects such as inclusiveness. The way in which the technology curriculum has attempted to meet the needs of a New Zealand technological society will be examined. The general aims of technology education in Technology in the New Zealand Curriculum are to develop: technological knowledge and understanding; an understanding and awareness of the interrelationship between technology and society; technological capability. The development of seven technological areas for all students will be highlighted. This paper will discuss in detail the development of the national technology education policy and the way in which the curriculum was developed. The last section of the paper will consider issues related to teacher development programmes and areas of future research.  相似文献   

11.
Teachers’ informed acceptance of challenges associated with teaching technology might ensure the successful implementation of a Technology syllabus in primary schools. They must be prepared to analyse their own understandings of technology concepts and processes, teaching and resource needs, and engage in professional development activities designed to meet their needs. This paper investigates the introduction of a new Technology syllabus into a school and draws on a number of data sources, for example, surveys, interviews with individual teachers, classroom observations, and field notes. It was evident that very specific personal and classroom related issues (e.g., content and pedagogy), and broader issues related to the school and wider communities (e.g., resources and networking), impacted on teachers’ acceptance of the syllabus. Based on these findings, the influence of 20 years of technology education and associated research on the essentials of classroom syllabus implementation by teachers is evaluated. Ways of making this store of knowledge and expertise more meaningful and accessible for teachers are explored.  相似文献   

12.
Technology education has long struggled to establish itself as an equal partner in general education and often struggled to gain recognition for the value of its instruction. Frequently technology educators tout the effectiveness of their programs based on anecdotal evidence gathered from their classroom experiences on how their instructional methods empower students to learn. Although technology education originated without any meaningful input from cognitive science research, it appears that technology education instruction methods are remarkably consonant with findings from cognitive science that define good instruction. Specifically, there is considerable accord between how instruction in technology education and cognitively based instructional models such as collaborative learning, socially distributed expertise, design/engineering, and project-based instruction can be connected. The role of the cognitive research findings on instruction could inform a long over-due theoretical grounding of instruction in technology education. The absence of research on learning and instruction in technology education could be attributed to a lack of theoretical grounding in this relatively new field. This paper examines four cognitively based models of instruction and reviews the relationships between research in the cognitive sciences on learning and instruction in technology education. The consonance between the research recommendations from the cognitive sciences and practice in technology education instruction could serve to stimulate debate on the theoretical grounding of an emerging field of study.  相似文献   

13.
In the United States cognitive research about technology education for the general educational purpose of technological literacy has suffered from a lack of a coherent focus. Certainly, there are studies that have addressed cognition, yet analysts of technology education research have been unable to coordinate their findings in any meaningful way (Streichler 1966; Dyrenfurth & Householder 1979; McCrory 1987; Zuga 1994). There are several persistent problems facing technology educators that contribute to the inability to develop clear interpretations or generalizations of the relationship of cognition and technology education. If some of those problems are identified, then, perhaps, we can address them in order to devise directions and strategies for studying cognition in technology education.  相似文献   

14.
Courses on the management of innovation and technology seldom treat government technology policies, and the issues they pose for business management. This is unfortunate. In many fields business has a big stake in government technology policies. They can help business, be a waste of money, or actually hurt business. This essay considers three broad issues in contemporary technology policy, that are of significant consequence to business: government support of applied research, the question of how to deal with the decline in business-funded basic research, and the complex questions about intellectual property rights.  相似文献   

15.
16.
This paper reports on the needs identified by three teachers during an investigation into their first experiences of implementing technology in their primary classrooms. One part of one teacher's case is presented in detail to illustrate that the meanings the teachers made of their experiences were related very closely to their beliefs about teaching and learning, to their understanding of technology as a phenomenon and to the place they saw technology having within the whole curriculum. One particular outcome of the investigation was that the teachers experienced a lack of knowledge of the scope and breadth of the technology learning area, and as a consequence, faced challenges in planning for the successful implementation of activities. In response to this particular need and to the many issues emanating from current research literature in technology education, the paper then presents two models for conceptualizing and planning units of work in technology in primary classrooms. The models form frameworks that may be useful to help structure thinking for authentic classroom planning and sequencing of lessons or learning experiences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
This paper addresses two closely interrelated issues in Technology Education: knowledge and values. The starting point for the discussion is analysis of the nature of knowledge in technology education. Approaches for theorising knowledge will be analysed in this paper as well as problems associated with them. Three major types of problems are identified: problems with finding an appropriate approach for the analysis of technological knowledge; problems with a technocratic interpretation of technological knowledge for the purpose of its classification; and problems with establishing a consistent approach to distinguish common features of technological knowledge. A model that represents knowledge in technology education and the place of values in it is presented as a way of overcoming the problems specified. The claim is made that understanding of knowledge/values relationships can improve theoretical understanding of how technology education can be constructed.  相似文献   

18.
The purpose of this study was to determine the elements motivating comprehensive school students to study technology education. In addition, we tried to discover how students' motivation towards technology education developed over the period leading up to their school experience and the effect this might have on their future involvement with technology. The research was carried out as a qualitative case study and the material was collected through individual theme interviews. The study group consisted of four 15 to 16-year-old students, each representing a totally different case of motivation towards technology education. In choosing individuals for the study the main criteria were gender and negative or positive motivation towards technology education. This study found that the artefact to be made in school and the student’s freedom of choice had the most significant effect on motivation. Although, we must be careful with final conclusions as the research group was relatively small.  相似文献   

19.
British and American discourses and experiences with respect to technology education are compared. Out of this comparison important issues are identified that have implications for the larger ongoing conversation on technology beyond these countries. They include the role of the state in establishing and validating the subject, the dual claims of technology literacy and technological capability, and dual curricular approaches — content and process.  相似文献   

20.
It is apparent from previous research that primary school teachers have very limited or narrow perceptions of design and technology and such views may affect adversely their ability and confidence to teach the key learning area of design and technology in the classroom. Therefore, it is the task of technology teacher educators to provide experiences that will broaden preservice teachers' perceptions of technology and technology education. This paper reports an investigation, using an interpretive research methodology, of preservice primary teachers' prior perceptions of design and technology and changes in their perceptions of design and technology as a result of their engagement in independent technology projects. Students enrolled in a one-year postgraduate teacher education program were the participants in the study and the methods of data collection included the use of survey instruments, interviews, field notes and students' reflective journals. The results indicate that the independent projects broadened and deepened the students' understandings of technology as a process. The implications of the approach for the design of technology education courses for preservice and inservice teachers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号