首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
PRICING OF AMERICAN PATH-DEPENDENT CONTINGENT CLAIMS   总被引:9,自引:0,他引:9  
We consider the problem of pricing path-dependent contingent claims. Classically, this problem can be cast into the Black-Scholes valuation framework through inclusion of the path-dependent variables into the state space. This leads to solving a degenerate advection-diffusion partial differential equation (PDE). We first estabilish necessary and sufficient conditions under which degenerate diffusions can be reduced to lower-dimensional nondegenerate diffusions. We apply these results to path-dependent options. Then, we describe a new numerical technique, called forward shooting grid (FSG) method, that efficiently copes with degenerate diffusion PDEs. Finally, we show that the FSG method is unconditionally stable and convergent. the FSG method is the first capable of dealing with the early exercise condition of American options. Several numerical examples are presented and discussed. 2  相似文献   

2.
The two problems of determining the existence of arbitrage among a finite set of options and of calculating the supremum price of an option consistent with other options prices have been reduced to finding an appropriate model of bounded size in many special cases. We generalize this result to a class of arbitrage-free  m -period markets with    d  + 1   basic securities and with no prior measure. We show there are no dominating trading strategies for a given set of  l  contingent claims if and only if their bid-ask prices are asymptotically consistent with models supported by at most   ( l  +  d  + 1)( d  + 1) m −1   points, if    m  ≥ 1  . An example showing the tightness of our bound is given.  相似文献   

3.
We consider the pricing of American put options in a model‐independent setting: that is, we do not assume that asset prices behave according to a given model, but aim to draw conclusions that hold in any model. We incorporate market information by supposing that the prices of European options are known. In this setting, we are able to provide conditions on the American put prices which are necessary for the absence of arbitrage. Moreover, if we further assume that there are finitely many European and American options traded, then we are able to show that these conditions are also sufficient. To show sufficiency, we construct a model under which both American and European options are correctly priced at all strikes simultaneously. In particular, we need to carefully consider the optimal stopping strategy in the construction of our process.  相似文献   

4.
DISCONTINUOUS ASSET PRICES AND NON-ATTAINABLE CONTINGENT CLAIMS1   总被引:1,自引:0,他引:1  
The price of a risky asset § is described by a Markov diffusion with jumps. In general there may be many equivalent martingale measures. Contingent claims which depend on the price of § at some time T may not be attainable, and the market may not be complete. However, using a martingale representation result, the local risk-minimizing strategy is explicitly constructed. This in turn provides a new motivation for the concept of the minimal martingale measure.  相似文献   

5.
ON UTILITY-BASED PRICING OF CONTINGENT CLAIMS IN INCOMPLETE MARKETS   总被引:1,自引:0,他引:1  
We study the uniqueness of the marginal utility-based price of contingent claims in a semimartingale model of an incomplete financial market. In particular, we obtain that a necessary and sufficient condition for all bounded contingent claims to admit a unique marginal utility-based price is that the solution to the dual problem defines an equivalent local martingale measure.  相似文献   

6.
In a complete financial market we consider the discrete time hedging of the American option with a convex payoff. It is well known that for the perfect hedging the writer of the option must trade continuously in time, which is impossible in practice. In reality, the writer hedges only at some discrete time instants. The perfect hedging requires the knowledge of the partial derivative of the value function of the American option in the underlying asset, the explicit form of which is unknown in most cases of practical importance. Several approximation methods have been developed for the calculation of the value function of the American option. We claim in this paper that having at hand any uniform approximation of the American option value function at equidistant discrete rebalancing times it is possible to construct a discrete time hedging portfolio, the value process of which uniformly approximates the value process of the continuous time perfect delta‐hedging portfolio. We are able to estimate the corresponding discrete time hedging error that leads to a complete justification of our hedging method for nonincreasing convex payoff functions including the important case of the American put. This method is essentially based on a new type square integral estimate for the derivative of an arbitrary convex function recently found by Shashiashvili.  相似文献   

7.
We present here the quantization method which is well-adapted for the pricing and hedging of American options on a basket of assets. Its purpose is to compute a large number of conditional expectations by projection of the diffusion on optimal grids designed to minimize the (square mean) projection error ( Graf and Luschgy 2000 ). An algorithm to compute such grids is described. We provide results concerning the orders of the approximation with respect to the regularity of the payoff function and the global size of the grids. Numerical tests are performed in dimensions 2, 4, 5, 6, 10 with American style exchange options. They show that theoretical orders are probably pessimistic.  相似文献   

8.
This paper derives domain restrictions on interest rates implied by no‐arbitrage. These restrictions are important for the study of arbitrage opportunities on bond markets, for regulation of these markets, and for econometric modelling.  相似文献   

9.
We prove that when the dividend rate of the underlying asset following a geometric Brownian motion is slightly larger than the risk‐free interest rate, the optimal exercise boundary of the American put option is not convex.  相似文献   

10.
We consider a class of production–investment models in discrete time with proportional transaction costs. For linear production functions, we study a natural extension of the no‐arbitrage of the second kind condition introduced by Rásonyi. We show that this condition implies the closedness of the set of attainable claims and is equivalent to the existence of a strictly consistent price system under which the evaluation of future production profits is strictly negative. This allows us to discuss the closedness of the set of terminal wealth in models with nonlinear production, functions which may admit arbitrages of the second kind for low production regimes but not marginally for high production regimes.  相似文献   

11.
ON THE AMERICAN OPTION PROBLEM   总被引:1,自引:0,他引:1  
Goran  Peskir 《Mathematical Finance》2005,15(1):169-181
We show how the change-of-variable formula with local time on curves derived recently in Peskir (2002) can be used to prove that the optimal stopping boundary for the American put option can be characterized as the unique solution of a nonlinear integral equation arising from the early exercise premium representation. This settles the question raised in Myneni (1992) and dating back to McKean (1965) .  相似文献   

12.
We develop a theory of robust pricing and hedging of a weighted variance swap given market prices for a finite number of co‐maturing put options. We assume the put option prices do not admit arbitrage and deduce no‐arbitrage bounds on the weighted variance swap along with super‐ and sub‐replicating strategies that enforce them. We find that market quotes for variance swaps are surprisingly close to the model‐free lower bounds we determine. We solve the problem by transforming it into an analogous question for a European option with a convex payoff. The lower bound becomes a problem in semi‐infinite linear programming which we solve in detail. The upper bound is explicit. We work in a model‐independent and probability‐free setup. In particular, we use and extend Föllmer's pathwise stochastic calculus. Appropriate notions of arbitrage and admissibility are introduced. This allows us to establish the usual hedging relation between the variance swap and the “log contract” and similar connections for weighted variance swaps. Our results take the form of a FTAP: we show that the absence of (weak) arbitrage is equivalent to the existence of a classical model which reproduces the observed prices via risk‐neutral expectations of discounted payoffs.  相似文献   

13.
We show that the optimal exercise boundary for the American put option with non-dividend-paying asset is convex. With this convexity result, we then give a simple rigorous argument providing an accurate asymptotic behavior for the exercise boundary near expiry.  相似文献   

14.
We introduce the notion of a market-free-lunch that depends on the preferences of all agents participating in the market. In semimartingale models of securities markets, we characterize no arbitrage (NA) and no-free-lunch-with-vanishing-risk (NFLVR) in terms of the market-free-lunch and show that the difference between NA and NFLVR consists in the selection of the class of monotone, respectively monotone and continuous, utility functions that determines the absence of the market-free-lunch. We also provide a direct proof of the equivalence between the absence of a market-free-lunch, with respect to monotone concave preferences, and the existence of an equivalent (local/sigma) martingale measure.  相似文献   

15.
Using a suitable change of probability measure, we obtain a Poisson series representation for the arbitrage‐free price process of vulnerable contingent claims in a regime‐switching market driven by an underlying continuous‐time Markov process. As a result of this representation, along with a short‐time asymptotic expansion of the claim's price process, we develop an efficient novel method for pricing claims whose payoffs may depend on the full path of the underlying Markov chain. The proposed approach is applied to price not only simple European claims such as defaultable bonds, but also a new type of path‐dependent claims that we term self‐decomposable, as well as the important class of vulnerable call and put options on a stock. We provide a detailed error analysis and illustrate the accuracy and computational complexity of our method on several market traded instruments, such as defaultable bond prices, barrier options, and vulnerable call options. Using again our Poisson series representation, we show differentiability in time of the predefault price function of European vulnerable claims, which enables us to rigorously deduce Feynman‐Ka? representations for the predefault pricing function and new semimartingale representations for the price process of the vulnerable claim under both risk‐neutral and objective probability measures.  相似文献   

16.
We derive an integral equation for the early exercise boundary of an American put option under Black–Scholes dynamics with discrete dividends at fixed times during the lifetime of the option. Our result is a generalization of the results obtained by Carr, Jarrow, and Myneni; Jacka; and Kim for the case without discrete dividends, and it requires a careful study of Snell envelopes for semimartingales with discontinuities.  相似文献   

17.
It is shown that delta hedging provides the optimal trading strategy in terms of minimal required initial capital to replicate a given terminal payoff in a continuous‐time Markovian context. This holds true in market models in which no equivalent local martingale measure exists but only a square‐integrable market price of risk. A new probability measure is constructed, which takes the place of an equivalent local martingale measure. To ensure the existence of the delta hedge, sufficient conditions are derived for the necessary differentiability of expectations indexed over the initial market configuration. The phenomenon of “bubbles,” which has recently been frequently discussed in the academic literature, is a special case of the setting in this paper. Several examples at the end illustrate the techniques described in this work.  相似文献   

18.
ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS   总被引:6,自引:0,他引:6  
We derive alternative representations of the McKean equation for the value of the American put option. Our main result decomposes the value of an American put option into the corresponding European put price and the early exercise premium. We then represent the European put price in a new manner. This representation allows us to alternatively decompose the price of an American put option into its intrinsic value and time value, and to demonstrate the equivalence of our results to the McKean equation.  相似文献   

19.
In this paper we use the Cox, Ingersoll, and Ross (1985b) single-factor, term structure model and extend it to the pricing of American default-free bond puts. We provide a quasi-analytical formula for these option prices based on recently established mathematical results for Bessel bridges, coupled with the optimal stopping time method. We extend our results to another interest rate contingent claim and provide a quasi-analytical solution for American yield option prices which illustrates the flexibility of our framework.  相似文献   

20.
We consider the problem of finding optimal exercise policies for American options, both under constant and stochastic volatility settings. Rather than work with the usual equations that characterize the price exclusively, we derive and use boundary evolution equations that characterize the evolution of the optimal exercise boundary. Using these boundary evolution equations we show how one can construct very efficient computational methods for pricing American options that avoid common sources of error. First, we detail a methodology for standard static grids and then describe an improvement that defines a grid that evolves dynamically while solving the problem. When integral representations are available, as in the Black–Scholes setting, we also describe a modified integral method that leverages on the representation to solve the boundary evolution equations. Finally we compare runtime and accuracy to other popular numerical methods. The ideas and methodology presented herein can easily be extended to other optimal stopping problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号